Telegram Group & Telegram Channel
🌸Больше языков для LLM🌸
#nlp #про_nlp

Huggingface в поиске контрибьюторов носителей языков!
Корпус FineWeb на 15 трлн токенов теперь ждёт большое расширение на 1000+ языков 🎉

🟣Сколько языков сейчас представлены в практике моделирования языка?

Если считать, что в целом живых языков 6-7 тысяч,
— в базе Ethnologue 7164
— суммарно во всех LLM работах упоминается примерно 1500 языков (в основном за счет работ NLLB и Towards MT for next 1000 languages)
— у звучащей речи чуть лучше: 4000 языков, но у 70% из них меньше чем 2 часа записей (за счет XEUS)

🟣Бутылочное горлышко валидации
Все ресурсы, которые так или иначе языки описывают, можно расположить на 2 осях координат: их качество и их пригодность для ML-применений. Окажется, что наиболее доступные и пригодные для предобучения моделей корпуса (CommonCrawl, его вариации) в то же время оказываются и наименее качественными.

Причина тому — автоматическое определение языка (см fasttext)  невозможность ручной валидации. Автоматические быстрые классификаторы как правило могут с высоким уровнем надежности определить не более 200 языков, тогда как большинство языков оказывается в большой куче "мусора"  — наименее надежно атрибутированных данных.

Бутылочное горлышко для того, чтобы побороть валидацию на большом объеме данных — это наличие сообщества носителей языков, которые бы активно контрибьютили и помогали улучшить как классификаторы, так и способы оценки качества получаемых языковых моделей.

Я уже несколько раз рассказывала про ситуацию с многоязычными данными, и даже несколько раз за этот год меняла слайды — так быстро меняется ситуация! И сегодня даже в лучшую сторону.

🟣Инициатива HuggingFace

Помимо расширения корпуса FineWeb, HuggingFace ищет волонтеров и носителей языка, чтобы расширить именно процедуру многоязычной оценки языковых моделей.
Новая инициатива — FineTasks — объединяет 4 стандартных бенчмарк-формата:

— Машинное чтение: Понимание предоставленного контекста и ответы на вопросы на его основе.
— Общие знания: Ответы на вопросы о фактах из различных областей без дополнительного контекста.
— Понимание естественного языка (NLU): Понимание семантики предоставленного ввода.
— Рассуждения на основе здравого смысла: Демонстрация способности выполнять простые рассуждения, требующие воплощенных знаний.
— Генеративные задачи: Умение генерировать корректный текст на целевом языке.

Авторы уже собрали 185 задач для 9 языков: поддерживаются
китайский, французский, арабский, русский, тайский, хинди, турецкий, суахили и телугу.


Цель для полного бенчмарка — как минимум 50 языков из разных семей, ареалов и с разной письменностью.

Ну и... ждём большой новый многоязычный корпус с открытой лицензией!

Куда контрибьютить?
🟣 Контрибьютить новые задания и языки можно здесь в шаблоне
🟣Мини-гайд
🟣Блог HF
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/rybolos_channel/1309
Create:
Last Update:

🌸Больше языков для LLM🌸
#nlp #про_nlp

Huggingface в поиске контрибьюторов носителей языков!
Корпус FineWeb на 15 трлн токенов теперь ждёт большое расширение на 1000+ языков 🎉

🟣Сколько языков сейчас представлены в практике моделирования языка?

Если считать, что в целом живых языков 6-7 тысяч,
— в базе Ethnologue 7164
— суммарно во всех LLM работах упоминается примерно 1500 языков (в основном за счет работ NLLB и Towards MT for next 1000 languages)
— у звучащей речи чуть лучше: 4000 языков, но у 70% из них меньше чем 2 часа записей (за счет XEUS)

🟣Бутылочное горлышко валидации
Все ресурсы, которые так или иначе языки описывают, можно расположить на 2 осях координат: их качество и их пригодность для ML-применений. Окажется, что наиболее доступные и пригодные для предобучения моделей корпуса (CommonCrawl, его вариации) в то же время оказываются и наименее качественными.

Причина тому — автоматическое определение языка (см fasttext)  невозможность ручной валидации. Автоматические быстрые классификаторы как правило могут с высоким уровнем надежности определить не более 200 языков, тогда как большинство языков оказывается в большой куче "мусора"  — наименее надежно атрибутированных данных.

Бутылочное горлышко для того, чтобы побороть валидацию на большом объеме данных — это наличие сообщества носителей языков, которые бы активно контрибьютили и помогали улучшить как классификаторы, так и способы оценки качества получаемых языковых моделей.

Я уже несколько раз рассказывала про ситуацию с многоязычными данными, и даже несколько раз за этот год меняла слайды — так быстро меняется ситуация! И сегодня даже в лучшую сторону.

🟣Инициатива HuggingFace

Помимо расширения корпуса FineWeb, HuggingFace ищет волонтеров и носителей языка, чтобы расширить именно процедуру многоязычной оценки языковых моделей.
Новая инициатива — FineTasks — объединяет 4 стандартных бенчмарк-формата:

— Машинное чтение: Понимание предоставленного контекста и ответы на вопросы на его основе.
— Общие знания: Ответы на вопросы о фактах из различных областей без дополнительного контекста.
— Понимание естественного языка (NLU): Понимание семантики предоставленного ввода.
— Рассуждения на основе здравого смысла: Демонстрация способности выполнять простые рассуждения, требующие воплощенных знаний.
— Генеративные задачи: Умение генерировать корректный текст на целевом языке.

Авторы уже собрали 185 задач для 9 языков: поддерживаются
китайский, французский, арабский, русский, тайский, хинди, турецкий, суахили и телугу.


Цель для полного бенчмарка — как минимум 50 языков из разных семей, ареалов и с разной письменностью.

Ну и... ждём большой новый многоязычный корпус с открытой лицензией!

Куда контрибьютить?
🟣 Контрибьютить новые задания и языки можно здесь в шаблоне
🟣Мини-гайд
🟣Блог HF

BY Kali Novskaya




Share with your friend now:
group-telegram.com/rybolos_channel/1309

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

I want a secure messaging app, should I use Telegram? Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.” Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future.
from it


Telegram Kali Novskaya
FROM American