Telegram Group & Telegram Channel
ARC Benchmark

Многие бенчмарки (то есть наборы данных с размеченными ожидаемыми ответами, признанные прокси-оценками качества) для LLM справедливо можно критиковать за то, что они по сути тестируют запоминание. Самый простой пример — бенчмарки вопросов-ответов (или тестов с опциями ответа, но не все): чтобы ответить на вопрос «в каком году было то и то?» не нужно быть гением мысли или обладать выдающимся интеллектом. Достаточно просто запомнить факт.

По мере усложнения задач в какой-то момент мы натыкаемся на дилемму — что является запоминанием, а что рассуждением модели? Если я придумываю новую математическую задачку для средней школы, которая решается в 4-5 действий, и модель её решает — какая здесь доля запоминания, а какая интеллекта/рассуждений? Модель могла видеть много схожих задач (больше, чем дети при обучении в школе), но не конкретно эту и даже не другую такую же с идентичным принципом решения.

И после преодоления этого региона, в теории, начинаются задачи, связанные с очень банальными знаниями, но требующие именно рассуждений. Вот ARC Benchmark, по мнению его создателя Francois Chollet, такой. С ним неплохо справляются дети, на 90%+ решают взрослые, но ни одна модель или даже система ни 4 года назад, ни сегодня не показывает близких результатов.

Как выглядит бенчмарк? Это сотни задачек по типу тех, что указаны на картинке, или которые вы можете покликать тут. Цель — по нескольким примерам найти паттерн, и применить его к новой ситуации. Francois считает, что паттерны и тип задачи тут очень редки, чтобы не допустить запоминания, но в то же время человек может разобраться.

Chollet вот 5 лет назад статью написал про свои взгляды и то, почему именно так хочет тестировать модели, и про то, почему нахождение новых паттернов из очень маленького набора данных и умение их применять — это мера интеллекта.

В среднем человек решает 85% задач (когда выходная картинка для нового примера идентично авторской), а LLM-ки единицы процентов. Лучшие системы (заточенные под схожий класс задач) добиваются ~34%.



group-telegram.com/seeallochnaya/1523
Create:
Last Update:

ARC Benchmark

Многие бенчмарки (то есть наборы данных с размеченными ожидаемыми ответами, признанные прокси-оценками качества) для LLM справедливо можно критиковать за то, что они по сути тестируют запоминание. Самый простой пример — бенчмарки вопросов-ответов (или тестов с опциями ответа, но не все): чтобы ответить на вопрос «в каком году было то и то?» не нужно быть гением мысли или обладать выдающимся интеллектом. Достаточно просто запомнить факт.

По мере усложнения задач в какой-то момент мы натыкаемся на дилемму — что является запоминанием, а что рассуждением модели? Если я придумываю новую математическую задачку для средней школы, которая решается в 4-5 действий, и модель её решает — какая здесь доля запоминания, а какая интеллекта/рассуждений? Модель могла видеть много схожих задач (больше, чем дети при обучении в школе), но не конкретно эту и даже не другую такую же с идентичным принципом решения.

И после преодоления этого региона, в теории, начинаются задачи, связанные с очень банальными знаниями, но требующие именно рассуждений. Вот ARC Benchmark, по мнению его создателя Francois Chollet, такой. С ним неплохо справляются дети, на 90%+ решают взрослые, но ни одна модель или даже система ни 4 года назад, ни сегодня не показывает близких результатов.

Как выглядит бенчмарк? Это сотни задачек по типу тех, что указаны на картинке, или которые вы можете покликать тут. Цель — по нескольким примерам найти паттерн, и применить его к новой ситуации. Francois считает, что паттерны и тип задачи тут очень редки, чтобы не допустить запоминания, но в то же время человек может разобраться.

Chollet вот 5 лет назад статью написал про свои взгляды и то, почему именно так хочет тестировать модели, и про то, почему нахождение новых паттернов из очень маленького набора данных и умение их применять — это мера интеллекта.

В среднем человек решает 85% задач (когда выходная картинка для нового примера идентично авторской), а LLM-ки единицы процентов. Лучшие системы (заточенные под схожий класс задач) добиваются ~34%.

BY Сиолошная






Share with your friend now:
group-telegram.com/seeallochnaya/1523

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge. He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea. Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links.
from it


Telegram Сиолошная
FROM American