Telegram Group & Telegram Channel
Cut Your Losses in Large-Vocabulary Language Models
Статья: https://arxiv.org/abs/2411.09009
Рецензии: https://openreview.net/forum?id=E4Fk3YuG56
Код: https://github.com/apple/ml-cross-entropy

Статья про оптимизацию памяти при подсчёте функции потерь и её ближайших градиентов при обучении языковых моделей. Основной механизм — модифицированная реализация перекрёстной энтропии, Cut Cross-Entropy (CCE). Авторы берут ровно ту же оптимизацию, которая используется в Flash Attention (поблочное вычисление в кэше GPU), но применяют её к последнему слою и последнему софтмаксу.

Последний шаг при предсказании следующего токена — линейный слой и софтмакс. На каждом шаге генерации у нас есть вектор E с последнего слоя трансформера, мы умножаем его на матрицу C, получаем логиты в ℝ^|V|, для каждого логита считаем экспоненту и делим на сумму всех логитов из всего словаря. Так для каждого токена получаем вероятность, число в отрезке [0, 1]. Функция потерь при обучении — логарифм вероятности правильного токена (с минусом). Нас интересует только правильный токен, и только его логит нам нужен в числителе софтмакса. Логарифм в лоссе гасит экспоненту в числителе. Вычисление раскладывается на две части: вычисление логита правильного токена и вычисление слагаемого нормализации по E и всем столбцам C (логарифм суммы экспонент).

При обучении мы можем считать всё параллельно для всех токенов, поэтому там уже не вектор E, а матрица E.

Для вычисления логитов правильных токенов авторы выгружают блоки релевантных столбцов C и блоки E в кэш, считают там скалярное произведение, и выгружают назад в основную память только финальный результат. Вычисление логарифма суммы экспонент гораздо хитрее, как и вычисление его градиентов, но концепция та же.

Кроме собственно оптимизаций с кэшом, используется тот факт, что большинство значений на выходе софтмакса "плохие", то есть очень близкие к нулю. Из-за ограниченной точности чисел с плавающей точкой, "плохие" значения ни на что не влияют при использовании в слагаемом нормализации. И для них авторы предлагают просто не считать градиенты. Вторая оптимизация такого рода — сортировка словаря по средним логитам, чтобы токены с "плохими" логитами попадали в один блок, и можно было такие блоки полностью пропускать.

По классификации в прошлом посте — это AG метод, полезен только при обучении. Есть и древние альтернативы, да хотя бы иерархический софтмакс или адаптивный софтмакс.

Экспериментально для Мистраля Немо удалось уменьшить память на лосс+градиенты с 8 Гб до 1.3 Гб, что лучше, чем в Liger Kernel. Аналогичная (и иногда даже более существенная) экономия памяти есть и для других моделей.

Потрогать можно через их библиотеку и патчинг модели. То есть вы делаете вот такое:

from cut_cross_entropy.transformers import cce_patch

model = ...
model = cce_patch(model)


После этого лосс и градиенты будут считаться как в статье. Но логиты не будут возвращаться, потому что они не материализуются в принципе.



group-telegram.com/senior_augur/349
Create:
Last Update:

Cut Your Losses in Large-Vocabulary Language Models
Статья: https://arxiv.org/abs/2411.09009
Рецензии: https://openreview.net/forum?id=E4Fk3YuG56
Код: https://github.com/apple/ml-cross-entropy

Статья про оптимизацию памяти при подсчёте функции потерь и её ближайших градиентов при обучении языковых моделей. Основной механизм — модифицированная реализация перекрёстной энтропии, Cut Cross-Entropy (CCE). Авторы берут ровно ту же оптимизацию, которая используется в Flash Attention (поблочное вычисление в кэше GPU), но применяют её к последнему слою и последнему софтмаксу.

Последний шаг при предсказании следующего токена — линейный слой и софтмакс. На каждом шаге генерации у нас есть вектор E с последнего слоя трансформера, мы умножаем его на матрицу C, получаем логиты в ℝ^|V|, для каждого логита считаем экспоненту и делим на сумму всех логитов из всего словаря. Так для каждого токена получаем вероятность, число в отрезке [0, 1]. Функция потерь при обучении — логарифм вероятности правильного токена (с минусом). Нас интересует только правильный токен, и только его логит нам нужен в числителе софтмакса. Логарифм в лоссе гасит экспоненту в числителе. Вычисление раскладывается на две части: вычисление логита правильного токена и вычисление слагаемого нормализации по E и всем столбцам C (логарифм суммы экспонент).

При обучении мы можем считать всё параллельно для всех токенов, поэтому там уже не вектор E, а матрица E.

Для вычисления логитов правильных токенов авторы выгружают блоки релевантных столбцов C и блоки E в кэш, считают там скалярное произведение, и выгружают назад в основную память только финальный результат. Вычисление логарифма суммы экспонент гораздо хитрее, как и вычисление его градиентов, но концепция та же.

Кроме собственно оптимизаций с кэшом, используется тот факт, что большинство значений на выходе софтмакса "плохие", то есть очень близкие к нулю. Из-за ограниченной точности чисел с плавающей точкой, "плохие" значения ни на что не влияют при использовании в слагаемом нормализации. И для них авторы предлагают просто не считать градиенты. Вторая оптимизация такого рода — сортировка словаря по средним логитам, чтобы токены с "плохими" логитами попадали в один блок, и можно было такие блоки полностью пропускать.

По классификации в прошлом посте — это AG метод, полезен только при обучении. Есть и древние альтернативы, да хотя бы иерархический софтмакс или адаптивный софтмакс.

Экспериментально для Мистраля Немо удалось уменьшить память на лосс+градиенты с 8 Гб до 1.3 Гб, что лучше, чем в Liger Kernel. Аналогичная (и иногда даже более существенная) экономия памяти есть и для других моделей.

Потрогать можно через их библиотеку и патчинг модели. То есть вы делаете вот такое:


from cut_cross_entropy.transformers import cce_patch

model = ...
model = cce_patch(model)


После этого лосс и градиенты будут считаться как в статье. Но логиты не будут возвращаться, потому что они не материализуются в принципе.

BY Старший Авгур


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/senior_augur/349

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. "There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. 'Wild West'
from it


Telegram Старший Авгур
FROM American