Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/sonyascience/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Соня и наука | Telegram Webview: sonyascience/578 -
Telegram Group & Telegram Channel
Проснулись-улыбнулись после праздников, возвращаемся к истории про плиточки и квазикристаллы. Первый пост из серии тут.

Пусть мы хотим замостить бесконечную плоскость некоторым конечным набором плиток. Замощение устроено так: плитки можно использовать сколько угодно раз, можно двигать трансляционно, но поворачивать и отражать нельзя. Самые простые примеры из набора в одну-две плитки: замощение правильными треугольниками, квадратами и шестиугольниками обсуждались в прошлый раз и объясняют возможные симметрии в кристаллах. Если посмотреть на получившееся замощение, можно заметить, что повторяя любой из его элементарных кусочков, можно воспроизвести бесконечное замощение во все стороны. Тогда говорят, что замощение периодическое. С другой стороны, если внести в замощение дефект, например, положить один (на всю бесконечную плоскость) прямоугольник набок, получится непериодическое замощение. Термин «непериодическое замощение» означает, что в отдельно взятом замощении фиксированным набором плиток нет дальнего порядка, однако (и это важно) этим же набором плиток можно произвести периодическое замощение, если выложить их иначе.

Третим типом замощения является апериодическое. Важно не путать его с непериодическим и вот в чем отличие. Пусть одним набором плиток можно замостить плоскость разными способами. Если среди этих способов есть хотя бы одно периодическое замощение (и сколько угодно непериодических), говорят, что этим набором можно замостить плоскость периодически или непериодически. Если же для данного набора плиток нет ни одного способа замостить плоскость периодически, говорят, что существует апериодическое замощение этим набором плиток.

Почему нам вообще важно отличать периодическое и апериодическое замощение? Задача апериодического замощения в середине прошлого века была ассоциирована с задачей остановки. Для данной программы и входных данных маширы Тьюринга надо понять, наступит ли окончание программы или она будет выполнять операции без остановки.

О том, какие бывают апериодические замощения и бывают ли, читайте в следующей части.



group-telegram.com/sonyascience/578
Create:
Last Update:

Проснулись-улыбнулись после праздников, возвращаемся к истории про плиточки и квазикристаллы. Первый пост из серии тут.

Пусть мы хотим замостить бесконечную плоскость некоторым конечным набором плиток. Замощение устроено так: плитки можно использовать сколько угодно раз, можно двигать трансляционно, но поворачивать и отражать нельзя. Самые простые примеры из набора в одну-две плитки: замощение правильными треугольниками, квадратами и шестиугольниками обсуждались в прошлый раз и объясняют возможные симметрии в кристаллах. Если посмотреть на получившееся замощение, можно заметить, что повторяя любой из его элементарных кусочков, можно воспроизвести бесконечное замощение во все стороны. Тогда говорят, что замощение периодическое. С другой стороны, если внести в замощение дефект, например, положить один (на всю бесконечную плоскость) прямоугольник набок, получится непериодическое замощение. Термин «непериодическое замощение» означает, что в отдельно взятом замощении фиксированным набором плиток нет дальнего порядка, однако (и это важно) этим же набором плиток можно произвести периодическое замощение, если выложить их иначе.

Третим типом замощения является апериодическое. Важно не путать его с непериодическим и вот в чем отличие. Пусть одним набором плиток можно замостить плоскость разными способами. Если среди этих способов есть хотя бы одно периодическое замощение (и сколько угодно непериодических), говорят, что этим набором можно замостить плоскость периодически или непериодически. Если же для данного набора плиток нет ни одного способа замостить плоскость периодически, говорят, что существует апериодическое замощение этим набором плиток.

Почему нам вообще важно отличать периодическое и апериодическое замощение? Задача апериодического замощения в середине прошлого века была ассоциирована с задачей остановки. Для данной программы и входных данных маширы Тьюринга надо понять, наступит ли окончание программы или она будет выполнять операции без остановки.

О том, какие бывают апериодические замощения и бывают ли, читайте в следующей части.

BY Соня и наука




Share with your friend now:
group-telegram.com/sonyascience/578

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise.
from it


Telegram Соня и наука
FROM American