Telegram Group & Telegram Channel
ЦБР | На земле, в небесах и на море
⚡️ «До чего дошел прогресс – труд физический исчез, да и умственный заменит механический процесс». В последнее время всё чаще можно услышать о том, что искусственный интеллект (ИИ) уже управляет различными системами на поле боя. Ещё чуть-чуть и он сможет самостоятельно…
⬆️Искусственный интеллект на поле боя: мифы и реальность (продолжение).
Важнейшим аспектом интеллекта — как естественного, так и искусственного — является умение рассуждать, т.е. делать умозаключения. «Если ИС совершенно не способна строить умозаключения, то она не заслуживает того, чтобы называться интеллектуальной». В логике известны три основных вида умозаключений (логических выводов): дедукция, индукция и абдукция.
◽️Дедукция — вывод от общего к частному: если А, то В; А истинно; следовательно, В истинно.
◽️Индукция — вывод от частного к общему: все известные объекты класса А обладают свойством В; следовательно, все объекты класса А обладают свойством В. Важным частным случаем индукции является статистический вывод. Пример: в некоторой выборке элементов класса А x процентов обладают свойством В; следовательно, во всем классе А x процентов его элементов обладают свойством В.
◽️Абдукция — вывод от следствия к причине: если А, то В; В истинно; следовательно, А истинно, т.е. А – причина В.
Каждый из этих видов имеет свои достоинства и недостатки.

ИИ, машинное обучение, машинное зрение и другие термины.
Прежде чем углубляться в применения ИИ в военной сфере, стоит дать определение самим терминам. Термины искусственный интеллект, машинное обучение (МО), глубокое обучение (ГО), нейронные сети (НС), Биг Дата хотя и взаимосвязаны, иногда используются взаимозаменяемо, что в корне не верно.
◽️Искусственный интеллект или искусственная система — представляет собой технологические решения, которые позволяют имитировать когнитивные функции человека и получать результаты, сопоставимые с реализацией его интеллектуальной деятельности. Ключевое отличие систем ИИ от обычных программных средств заключается в способности ИИ к обучению. Системы на основе ИИ обучаются, извлекая закономерности из данных и настраивая внутренние скрытые параметры, необходимые для получения решения.
ℹ️ Если система не способна строить умозаключения, делать выводы и принимать решения, она не является интеллектуальной.

◽️Машинное обучение — дисциплина, находящаяся на пересечении математической статистики, численных методов оптимизации, теории вероятностей, а также дискретного анализа. С помощью ее методов происходит решение задачи извлечения знаний из данных, которой занимается еще только формирующаяся область «Интеллектуальный анализ данных (ИАД)» (DataMining).

◽️Глубокое обучение — это подотрасль МО, то есть здесь тоже компьютер обучается, но обучается немного по-другому, чем в стандартном МО. В ГО используются нейронные сети (НС), которые представляют собой алгоритмы, повторяющие логику нейронов человеческого мозга. Большие объемы данных проходят через эти нейронные сети, и на выходе выдаются уже готовые ответы. Иногда нейронные сети называют даже черным ящиком, потому что мы не всегда можем понять, что происходит внутри этих сетей.

◽️Машинное зрение — научная область, занимающаяся исследованиями в области автоматической фиксации и разного рода обработки изображений (обнаружение, отслеживание, идентификация) с помощью компьютера. Это один из инструментов ИАД для получения данных, чтобы ИИ обучался. Поэтому во фразе «Использование ИИ в системах машинного зрения предполагает, что машина сможет принимать более сложные решения, выходящие за пределы современных возможностей» все поставлено с ног на голову и она не верна.
ℹ️ Никакая система машинного зрения никакие решения не принимает. Решения принимает система искусственного интеллекта, а МЗ может использовать алгоритмы, библиотеки и другие способы для более качественного получения цифровой фото и видеоинформации и объема данных, на которых в свою очередь происходит обучение ИИ. И на сегодняшний день не существует идеальных алгоритмов и в целом систем машинного зрения, которые предназначены для решения универсальных задач.

Для понимания краткую схему можно обозначить так:
ИИ
➡️Машинное обучение➡️Машинное зрение

⬇️(продолжение)
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/RUSCBR/215
Create:
Last Update:

⬆️Искусственный интеллект на поле боя: мифы и реальность (продолжение).
Важнейшим аспектом интеллекта — как естественного, так и искусственного — является умение рассуждать, т.е. делать умозаключения. «Если ИС совершенно не способна строить умозаключения, то она не заслуживает того, чтобы называться интеллектуальной». В логике известны три основных вида умозаключений (логических выводов): дедукция, индукция и абдукция.
◽️Дедукция — вывод от общего к частному: если А, то В; А истинно; следовательно, В истинно.
◽️Индукция — вывод от частного к общему: все известные объекты класса А обладают свойством В; следовательно, все объекты класса А обладают свойством В. Важным частным случаем индукции является статистический вывод. Пример: в некоторой выборке элементов класса А x процентов обладают свойством В; следовательно, во всем классе А x процентов его элементов обладают свойством В.
◽️Абдукция — вывод от следствия к причине: если А, то В; В истинно; следовательно, А истинно, т.е. А – причина В.
Каждый из этих видов имеет свои достоинства и недостатки.

ИИ, машинное обучение, машинное зрение и другие термины.
Прежде чем углубляться в применения ИИ в военной сфере, стоит дать определение самим терминам. Термины искусственный интеллект, машинное обучение (МО), глубокое обучение (ГО), нейронные сети (НС), Биг Дата хотя и взаимосвязаны, иногда используются взаимозаменяемо, что в корне не верно.
◽️Искусственный интеллект или искусственная система — представляет собой технологические решения, которые позволяют имитировать когнитивные функции человека и получать результаты, сопоставимые с реализацией его интеллектуальной деятельности. Ключевое отличие систем ИИ от обычных программных средств заключается в способности ИИ к обучению. Системы на основе ИИ обучаются, извлекая закономерности из данных и настраивая внутренние скрытые параметры, необходимые для получения решения.
ℹ️ Если система не способна строить умозаключения, делать выводы и принимать решения, она не является интеллектуальной.

◽️Машинное обучение — дисциплина, находящаяся на пересечении математической статистики, численных методов оптимизации, теории вероятностей, а также дискретного анализа. С помощью ее методов происходит решение задачи извлечения знаний из данных, которой занимается еще только формирующаяся область «Интеллектуальный анализ данных (ИАД)» (DataMining).

◽️Глубокое обучение — это подотрасль МО, то есть здесь тоже компьютер обучается, но обучается немного по-другому, чем в стандартном МО. В ГО используются нейронные сети (НС), которые представляют собой алгоритмы, повторяющие логику нейронов человеческого мозга. Большие объемы данных проходят через эти нейронные сети, и на выходе выдаются уже готовые ответы. Иногда нейронные сети называют даже черным ящиком, потому что мы не всегда можем понять, что происходит внутри этих сетей.

◽️Машинное зрение — научная область, занимающаяся исследованиями в области автоматической фиксации и разного рода обработки изображений (обнаружение, отслеживание, идентификация) с помощью компьютера. Это один из инструментов ИАД для получения данных, чтобы ИИ обучался. Поэтому во фразе «Использование ИИ в системах машинного зрения предполагает, что машина сможет принимать более сложные решения, выходящие за пределы современных возможностей» все поставлено с ног на голову и она не верна.
ℹ️ Никакая система машинного зрения никакие решения не принимает. Решения принимает система искусственного интеллекта, а МЗ может использовать алгоритмы, библиотеки и другие способы для более качественного получения цифровой фото и видеоинформации и объема данных, на которых в свою очередь происходит обучение ИИ. И на сегодняшний день не существует идеальных алгоритмов и в целом систем машинного зрения, которые предназначены для решения универсальных задач.

Для понимания краткую схему можно обозначить так:
ИИ
➡️Машинное обучение➡️Машинное зрение

⬇️(продолжение)

BY ЦБР | На земле, в небесах и на море


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/RUSCBR/215

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel. NEWS Sebi said data, emails and other documents are being retrieved from the seized devices and detailed investigation is in progress.
from jp


Telegram ЦБР | На земле, в небесах и на море
FROM American