От меня не требовалось программировать для продакшена, а только улучшать работу отдела лингвистики. Мне казалось это легкой и недостаточно продвинутой работой, по сравнению с тем, что я делала в магистратуре и затем в аспирантуре, но я все равно многому научилась. Вот что это было.
Pandas. Я уже знала кое-что базовое про таблицы и pandas, и решила применить эти знания. Анализ ошибок распознавания и маршрутизации звонков происходил в экселе, вручную, что приводило к большому количеству опечаток, проблемам с кодировкой и тому подобное. Из текстовых логов я делала таблицы CSV, лингвисты напрямую открывали их в экселе, кодировка ломалась, и так каждый раз. Я посмотрела на все это и написала скрипты на питоне, которые читали эти таблицы, исправляли кодировку, считали статистику (точность, полноту и тд.) и показывали, в каких местах есть опечатки, неправильные колонки, пустые ячейки. Все, что можно было исправить автоматически, исправлялось, остальное просто выводилось на экран. Таким образом я быстро стала богиней таблиц. Pandas - это лучшее изобретение для обработки таблиц в питоне. Pandas + Spyder - это любовь и я не представляю, что может быть удобнее и стабильнее.
CLI (command line interface). Чтобы остальные лингвисты могли использовать эти скрипты, мне пришлось освоить написание интерфейсов для командной строки и библиотеку argparse.
Работа с файлами в питоне. При работе с логами требовалось копировать файлы, выбирать нужные в разных папках разной структуры, форматировать, переименовывать и удалять. Все это было сделано на баш-скриптах, и я написала что-то подобное, только на питоне. Что было намного более понятно и поддавалось контролю, в отличие от.
Я также научилась устанавливать и настраивать Nuance, если компании нужно было только распознавание речи, без звонков. Весь пользовательский интерфейс был через CLI. Мне пришлось освоить командную строку в виндоус и Red Hat, а также YAML. Я прошла курс по Нюансу, и у меня даже есть сертификат. Я сертифицированный устанавливатель Нюанса.
Я написала скрипты, чтобы считать word error rate для распознавания речи.
API Google Translate. Для создания корпуса на каталанском я предложила использовать перевод с испанского. Этот перевод сперва хотели поручать каталанскому офису, они же знают два языка, пусть переводят. Я говорю: ведь если мы переведем тексты автоматически, тем более что пара испанский-каталан несложная, а работники только проверят, что все правильно и где неправильно, исправят, это сократит время работы.
От меня не требовалось программировать для продакшена, а только улучшать работу отдела лингвистики. Мне казалось это легкой и недостаточно продвинутой работой, по сравнению с тем, что я делала в магистратуре и затем в аспирантуре, но я все равно многому научилась. Вот что это было.
Pandas. Я уже знала кое-что базовое про таблицы и pandas, и решила применить эти знания. Анализ ошибок распознавания и маршрутизации звонков происходил в экселе, вручную, что приводило к большому количеству опечаток, проблемам с кодировкой и тому подобное. Из текстовых логов я делала таблицы CSV, лингвисты напрямую открывали их в экселе, кодировка ломалась, и так каждый раз. Я посмотрела на все это и написала скрипты на питоне, которые читали эти таблицы, исправляли кодировку, считали статистику (точность, полноту и тд.) и показывали, в каких местах есть опечатки, неправильные колонки, пустые ячейки. Все, что можно было исправить автоматически, исправлялось, остальное просто выводилось на экран. Таким образом я быстро стала богиней таблиц. Pandas - это лучшее изобретение для обработки таблиц в питоне. Pandas + Spyder - это любовь и я не представляю, что может быть удобнее и стабильнее.
CLI (command line interface). Чтобы остальные лингвисты могли использовать эти скрипты, мне пришлось освоить написание интерфейсов для командной строки и библиотеку argparse.
Работа с файлами в питоне. При работе с логами требовалось копировать файлы, выбирать нужные в разных папках разной структуры, форматировать, переименовывать и удалять. Все это было сделано на баш-скриптах, и я написала что-то подобное, только на питоне. Что было намного более понятно и поддавалось контролю, в отличие от.
Я также научилась устанавливать и настраивать Nuance, если компании нужно было только распознавание речи, без звонков. Весь пользовательский интерфейс был через CLI. Мне пришлось освоить командную строку в виндоус и Red Hat, а также YAML. Я прошла курс по Нюансу, и у меня даже есть сертификат. Я сертифицированный устанавливатель Нюанса.
Я написала скрипты, чтобы считать word error rate для распознавания речи.
API Google Translate. Для создания корпуса на каталанском я предложила использовать перевод с испанского. Этот перевод сперва хотели поручать каталанскому офису, они же знают два языка, пусть переводят. Я говорю: ведь если мы переведем тексты автоматически, тем более что пара испанский-каталан несложная, а работники только проверят, что все правильно и где неправильно, исправят, это сократит время работы.
BY NLP Master
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. "Like the bombing of the maternity ward in Mariupol," he said, "Even before it hits the news, you see the videos on the Telegram channels." WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world.
from jp