Telegram Group & Telegram Channel
📢 Релиз Moondream 2B

Новая vision модель для эйдж девайсов

Поддерживает структурированные выводы, улучшенное понимание текста, отслежтвание взгляда.



from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image

model = AutoModelForCausalLM.from_pretrained(
"vikhyatk/moondream2",
revision="2025-01-09",
trust_remote_code=True,
# Uncomment to run on GPU.
# device_map={"": "cuda"}
)

# Captioning
print("Short caption:")
print(model.caption(image, length="short")["caption"])

print("\nNormal caption:")
for t in model.caption(image, length="normal", stream=True)["caption"]:
# Streaming generation example, supported for caption() and detect()
print(t, end="", flush=True)
print(model.caption(image, length="normal"))

# Visual Querying
print("\nVisual query: 'How many people are in the image?'")
print(model.query(image, "How many people are in the image?")["answer"])

# Object Detection
print("\nObject detection: 'face'")
objects = model.detect(image, "face")["objects"]
print(f"Found {len(objects)} face(s)")

# Pointing
print("\nPointing: 'person'")
points = model.point(image, "person")["points"]
print(f"Found {len(points)} person(s)")


https://huggingface.co/vikhyatk/moondream2


HF: https://huggingface.co/vikhyatk/moondream2

Demo: https://moondream.ai/playground

Github: https://github.com/vikhyat/moondream

@data_analysis_ml



group-telegram.com/data_analysis_ml/3040
Create:
Last Update:

📢 Релиз Moondream 2B

Новая vision модель для эйдж девайсов

Поддерживает структурированные выводы, улучшенное понимание текста, отслежтвание взгляда.



from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image

model = AutoModelForCausalLM.from_pretrained(
"vikhyatk/moondream2",
revision="2025-01-09",
trust_remote_code=True,
# Uncomment to run on GPU.
# device_map={"": "cuda"}
)

# Captioning
print("Short caption:")
print(model.caption(image, length="short")["caption"])

print("\nNormal caption:")
for t in model.caption(image, length="normal", stream=True)["caption"]:
# Streaming generation example, supported for caption() and detect()
print(t, end="", flush=True)
print(model.caption(image, length="normal"))

# Visual Querying
print("\nVisual query: 'How many people are in the image?'")
print(model.query(image, "How many people are in the image?")["answer"])

# Object Detection
print("\nObject detection: 'face'")
objects = model.detect(image, "face")["objects"]
print(f"Found {len(objects)} face(s)")

# Pointing
print("\nPointing: 'person'")
points = model.point(image, "person")["points"]
print(f"Found {len(points)} person(s)")


https://huggingface.co/vikhyatk/moondream2


HF: https://huggingface.co/vikhyatk/moondream2

Demo: https://moondream.ai/playground

Github: https://github.com/vikhyat/moondream

@data_analysis_ml

BY Анализ данных (Data analysis)





Share with your friend now:
group-telegram.com/data_analysis_ml/3040

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

'Wild West' This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors. Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can." Telegram users are able to send files of any type up to 2GB each and access them from any device, with no limit on cloud storage, which has made downloading files more popular on the platform. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number.
from jp


Telegram Анализ данных (Data analysis)
FROM American