Telegram Group & Telegram Channel
Так, хватит хиханек-хаханек, пора возобновлять рубрику #книги . Сегодня я хочу рассказать про интересную книжку под названием "ГЕОМЕТРИИ" от А.Б. Сосинского 💅 (рис. 1).

Геометрия в ней понимается в смысле Клейна, т.е. как множество с действием группы на нем. В качестве множества обычно берется множество точек, а в качестве группы - множество допустимых в данной геометрии преобразований. Подобным образом автор задает "геометрии симметрий многогранников", а также знакомые нам обычную геометрию Евклида, Лобачевского, Римана и т.д. (см. оглавление книги - рис. 2). Это не совсем стандартный подход, и читать про него довольно интересно.

В частности, мне понравилась часть про платоновы тела (рис. 3-4), в которой автор доказывает с помощью методов теории групп, почему в трехмерном пространстве их существует всего пять; да и в целом часть про теорию групп в этой книге мне понравилась.

Книга сравнительно доступна: она рассчитана на студентов мехмата или другого похожего факультета 1-2 курсов. Еще из плюсов книги можно отметить то, что она снабжена большим количеством упражнений (рис. 5), многие из которых имеют ответы и указания к решению в конце.

Я сама пока что прочитала около трети книги. Из того, что на данный момент непонятно: не соображу, почему все-таки если задать Евклидову геометрию (и другие на рис. 6-7) множеством точек и действующим на нем преобразованием, то нам больше не обязательно использовать аксиомы Евклида? Чтобы это было правдой, аксиомы Евклида должны выводиться из этого нового определения, но как сделать этот вывод, мне пока не очевидно. 😌

UPD: в комментариях начали разбирать этот вопрос, заходите
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/forodirchNEWS/2826
Create:
Last Update:

Так, хватит хиханек-хаханек, пора возобновлять рубрику #книги . Сегодня я хочу рассказать про интересную книжку под названием "ГЕОМЕТРИИ" от А.Б. Сосинского 💅 (рис. 1).

Геометрия в ней понимается в смысле Клейна, т.е. как множество с действием группы на нем. В качестве множества обычно берется множество точек, а в качестве группы - множество допустимых в данной геометрии преобразований. Подобным образом автор задает "геометрии симметрий многогранников", а также знакомые нам обычную геометрию Евклида, Лобачевского, Римана и т.д. (см. оглавление книги - рис. 2). Это не совсем стандартный подход, и читать про него довольно интересно.

В частности, мне понравилась часть про платоновы тела (рис. 3-4), в которой автор доказывает с помощью методов теории групп, почему в трехмерном пространстве их существует всего пять; да и в целом часть про теорию групп в этой книге мне понравилась.

Книга сравнительно доступна: она рассчитана на студентов мехмата или другого похожего факультета 1-2 курсов. Еще из плюсов книги можно отметить то, что она снабжена большим количеством упражнений (рис. 5), многие из которых имеют ответы и указания к решению в конце.

Я сама пока что прочитала около трети книги. Из того, что на данный момент непонятно: не соображу, почему все-таки если задать Евклидову геометрию (и другие на рис. 6-7) множеством точек и действующим на нем преобразованием, то нам больше не обязательно использовать аксиомы Евклида? Чтобы это было правдой, аксиомы Евклида должны выводиться из этого нового определения, но как сделать этот вывод, мне пока не очевидно. 😌

UPD: в комментариях начали разбирать этот вопрос, заходите

BY Кофейный теоретик










Share with your friend now:
group-telegram.com/forodirchNEWS/2826

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels.
from jp


Telegram Кофейный теоретик
FROM American