Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/gonzo_ML/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
gonzo-обзоры ML статей | Telegram Webview: gonzo_ML/62 -
Telegram Group & Telegram Channel
3. Сложные модификации Трансформера -- борьба с ограничениями.

Базовых ограничений у Трансформера несколько:
* не может быть контекста длиннее длины входа
* тяжело увеличивать длину входа (attention это квадрат от входа по сложности)
* не Turing Complete
Соответственно, последние полгода народ активно работает над снятием этих ограничений. Тут мне попались такие штуки:

3.1. Universal Transformers, Google, написан в прошлом году, попал на ICLR2019
Статья: https://arxiv.org/abs/1807.03819
Блогопост: https://ai.googleblog.com/2018/08/moving-beyond-translation-with.html
Свежий разбор: http://mostafadehghani.com/2019/05/05/universal-transformers/

Мотивация -- трасформеры не Turing Complete и у трасформеров нет Recurrent Inductive Bias, а оно, говорят, очень полезно для генерализации структуры.
Давайте сделаем реккурентную сеть поверх трансформерной ячейки.

Ячейка -- один энкодерный слой из трансформера, на каждом такте она обрабатывает все входы и выдаёт самой себе выход на следующий шаг.
При этом надо как-то понять когда остановиться -- делаем вычисляемый признак остановки -- отдельный для каждой позиции входа.
Такая конструкция называется Adaptive universal transformer (идея adaptive остновки взята из аналогичных более старых работ про RNN).
Если для какой-то позиции случалась остановка -- стейт этой позиции замораживаем и копируем дальше на входы внимания другим словам на более поздних итерациях.

Утверждается, что UT существенно более эффективен, чем обычный Трансформер на задачах, где мало входных данных.

3.2. Transformer-XL, начало 2019, Google Brain + CMU
Статья: https://arxiv.org/abs/1901.02860
Разбор: https://towardsdatascience.com/transformer-xl-explained-combining-transformers-and-rnns-into-a-state-of-the-art-language-model-c0cfe9e5a924

Боремся с проблемой фиксированной длины входа. Transformer-XL это модификация LM over vanilla Transformer, позволяющая откусить больше, чем в рот помещается. Полезная для понимания схема -- ниже.
Логика простая:
* Пусть у нас есть допустимый вход длины Х. И входное предложение длины Y>X.
* Порежем входное предложение на куски длины Х.
* Первый кусок пропустим как обычно, но будем сохранять промежуточные стейты.
* Дальше будем обрабатывать следующий кусок, плюс подавать на вход ещё и стейты с предыдущего куска (и запоминать новые).
Такая схема позволяет, сохраняя историю стейтов равную высоте стэка, имитировать длинное окно входа. Это не совсем честно, т.к. градиент на прошлый кусок уже не уйдёт, но всё равно не так плохо. Есть ещё одна загвоздка -- в оригинальном Трансформере у нас есть абсолютное позиционное кодирование. Здесь вместо него предлагается использовать относительное: при расчёте внимания со слова в позиции А на слово в позиции В считать вес внимания отдельно по совпадению Query/Key (без позиционного сигнала) + часть веса добавлять как функицю от разности (В-А). И такую конструкцию, в отличие от оригинального Трансформера, следует делать на каждом слое сети.

Показано, что такой подход даёт SOTA на задачах, где нужно держать длинный контекст.



group-telegram.com/gonzo_ML/62
Create:
Last Update:

3. Сложные модификации Трансформера -- борьба с ограничениями.

Базовых ограничений у Трансформера несколько:
* не может быть контекста длиннее длины входа
* тяжело увеличивать длину входа (attention это квадрат от входа по сложности)
* не Turing Complete
Соответственно, последние полгода народ активно работает над снятием этих ограничений. Тут мне попались такие штуки:

3.1. Universal Transformers, Google, написан в прошлом году, попал на ICLR2019
Статья: https://arxiv.org/abs/1807.03819
Блогопост: https://ai.googleblog.com/2018/08/moving-beyond-translation-with.html
Свежий разбор: http://mostafadehghani.com/2019/05/05/universal-transformers/

Мотивация -- трасформеры не Turing Complete и у трасформеров нет Recurrent Inductive Bias, а оно, говорят, очень полезно для генерализации структуры.
Давайте сделаем реккурентную сеть поверх трансформерной ячейки.

Ячейка -- один энкодерный слой из трансформера, на каждом такте она обрабатывает все входы и выдаёт самой себе выход на следующий шаг.
При этом надо как-то понять когда остановиться -- делаем вычисляемый признак остановки -- отдельный для каждой позиции входа.
Такая конструкция называется Adaptive universal transformer (идея adaptive остновки взята из аналогичных более старых работ про RNN).
Если для какой-то позиции случалась остановка -- стейт этой позиции замораживаем и копируем дальше на входы внимания другим словам на более поздних итерациях.

Утверждается, что UT существенно более эффективен, чем обычный Трансформер на задачах, где мало входных данных.

3.2. Transformer-XL, начало 2019, Google Brain + CMU
Статья: https://arxiv.org/abs/1901.02860
Разбор: https://towardsdatascience.com/transformer-xl-explained-combining-transformers-and-rnns-into-a-state-of-the-art-language-model-c0cfe9e5a924

Боремся с проблемой фиксированной длины входа. Transformer-XL это модификация LM over vanilla Transformer, позволяющая откусить больше, чем в рот помещается. Полезная для понимания схема -- ниже.
Логика простая:
* Пусть у нас есть допустимый вход длины Х. И входное предложение длины Y>X.
* Порежем входное предложение на куски длины Х.
* Первый кусок пропустим как обычно, но будем сохранять промежуточные стейты.
* Дальше будем обрабатывать следующий кусок, плюс подавать на вход ещё и стейты с предыдущего куска (и запоминать новые).
Такая схема позволяет, сохраняя историю стейтов равную высоте стэка, имитировать длинное окно входа. Это не совсем честно, т.к. градиент на прошлый кусок уже не уйдёт, но всё равно не так плохо. Есть ещё одна загвоздка -- в оригинальном Трансформере у нас есть абсолютное позиционное кодирование. Здесь вместо него предлагается использовать относительное: при расчёте внимания со слова в позиции А на слово в позиции В считать вес внимания отдельно по совпадению Query/Key (без позиционного сигнала) + часть веса добавлять как функицю от разности (В-А). И такую конструкцию, в отличие от оригинального Трансформера, следует делать на каждом слое сети.

Показано, что такой подход даёт SOTA на задачах, где нужно держать длинный контекст.

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/62

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

During the operations, Sebi officials seized various records and documents, including 34 mobile phones, six laptops, four desktops, four tablets, two hard drive disks and one pen drive from the custody of these persons. He adds: "Telegram has become my primary news source." Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. "The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into." NEWS
from jp


Telegram gonzo-обзоры ML статей
FROM American