Telegram Group & Telegram Channel
Мне вчера рассказали очень крутое, а главное, естественное доказательство квадратичного закона взаимности Гаусса. Видимо, оно является переведенным на язык теории Галуа стандартным рассуждением с рассмотрением сумм экспонент. Наверное, это рассуждение будет не очень понятно школьникам, так для его осознания надо немного шарить за кольца целых и достаточно базовую теорию Галуа.

Начну с формулировки. Пусть у вас имеется некоторое простое число p. Тогда ненулевые остатки по модулю p бывают двух видов: a называется квадратичным вычетом, если a = x^2 для некоторого другого остатка x. В противном случае a называется квадратичным невычетом. В первом случае будем писать (a | p) = 1, во втором (a | p) = -1. Так вот квадратичный закон взаимности утверждает, что для двух простых чисел p и q больших 2 выполняется следующее тождество: (p | q) * (q | p) = (-1)^(p-1/ 2) * (q-1 / 2)

У этого утверждения существует множества доказательств, в том числе и совсем элементарные, не требующие даже знаний комплексных чисел. Однако расплата за элементарность, как это обычно и бывает, это крайне вычурные рассуждения, которые очень сложно придумать. Я же хочу дать набросок короткого и понятного рассуждения, которое опирается на несовсем элементарный аппарат.

Итак, начнем с того, что рассмотрим eps — комплексный корень степени p из 1. У Q(eps) (оно же поле разложения многочлена x^p - 1 / x - 1) есть единственное квадратичное подрасширение Q(\sqrt(D) ) при некотором целом D, так как в группа Галуа Q(eps) это (Z/pZ)^* имеет единственную подгруппу индекса 2. Очень хорошо, давайте теперь изучим кольца целых двух полученных полей. O(eps) это Z[eps], а O(\sqrt(D)) это либо Z[\sqrt(D)] либо Z[( 1 + \sqrt(D) ) / 2].

Теперь заведем второе простое число q. Идея заключается в том, чтобы посмотреть на простые идеалы, которые весят над q в интересующих нас кольцах целых. Их изучение немедленно приведет к квадратичному закону. Заметим, что q не ветвится в Z[eps] так как q по тривиальным причинам не делит disk(x^p - 1 / x - 1). Это заодно означает, что q не ветвится и в Z[sqrt(D)]. Кажется, дискриминант Z[ 1 + sqrt(D) / 2] это 2D или 4D (точно не помню), но так или иначе так как q больше 2 и не делит D, то и эту шутку оно не делит. Получаем, что q в любом случае неразветвленно в каждом из наших колец целых.

Пусть I и I* это простые идеалы, висящие над q в Z[eps] и втором кольце соответственно. Теорема Дедекинда нам сообщает, что в Gal(Q(eps)) можно найти такой элемент S, что S(x) сравнимо с x^q по модулю I для любого x из Z[eps], и аналогичный S* можно найти в Gal(Q(sqrt(D)). Далее у нас имеется сюрьектинвный гомоморфизм их Gal(Q(eps)) = (Z / pZ)^* в Gal(Q(\sqrt(D)) = {-1, 1} (по умножению): четные степени первообразного корня он переводит в 1, а нечетные в -1, то есть этот гомоморфизм это просто (x | p). Если теперь написать, что S переходит в S*, то в точности получится квадратичный закон!



group-telegram.com/kusaka_daily/226
Create:
Last Update:

Мне вчера рассказали очень крутое, а главное, естественное доказательство квадратичного закона взаимности Гаусса. Видимо, оно является переведенным на язык теории Галуа стандартным рассуждением с рассмотрением сумм экспонент. Наверное, это рассуждение будет не очень понятно школьникам, так для его осознания надо немного шарить за кольца целых и достаточно базовую теорию Галуа.

Начну с формулировки. Пусть у вас имеется некоторое простое число p. Тогда ненулевые остатки по модулю p бывают двух видов: a называется квадратичным вычетом, если a = x^2 для некоторого другого остатка x. В противном случае a называется квадратичным невычетом. В первом случае будем писать (a | p) = 1, во втором (a | p) = -1. Так вот квадратичный закон взаимности утверждает, что для двух простых чисел p и q больших 2 выполняется следующее тождество: (p | q) * (q | p) = (-1)^(p-1/ 2) * (q-1 / 2)

У этого утверждения существует множества доказательств, в том числе и совсем элементарные, не требующие даже знаний комплексных чисел. Однако расплата за элементарность, как это обычно и бывает, это крайне вычурные рассуждения, которые очень сложно придумать. Я же хочу дать набросок короткого и понятного рассуждения, которое опирается на несовсем элементарный аппарат.

Итак, начнем с того, что рассмотрим eps — комплексный корень степени p из 1. У Q(eps) (оно же поле разложения многочлена x^p - 1 / x - 1) есть единственное квадратичное подрасширение Q(\sqrt(D) ) при некотором целом D, так как в группа Галуа Q(eps) это (Z/pZ)^* имеет единственную подгруппу индекса 2. Очень хорошо, давайте теперь изучим кольца целых двух полученных полей. O(eps) это Z[eps], а O(\sqrt(D)) это либо Z[\sqrt(D)] либо Z[( 1 + \sqrt(D) ) / 2].

Теперь заведем второе простое число q. Идея заключается в том, чтобы посмотреть на простые идеалы, которые весят над q в интересующих нас кольцах целых. Их изучение немедленно приведет к квадратичному закону. Заметим, что q не ветвится в Z[eps] так как q по тривиальным причинам не делит disk(x^p - 1 / x - 1). Это заодно означает, что q не ветвится и в Z[sqrt(D)]. Кажется, дискриминант Z[ 1 + sqrt(D) / 2] это 2D или 4D (точно не помню), но так или иначе так как q больше 2 и не делит D, то и эту шутку оно не делит. Получаем, что q в любом случае неразветвленно в каждом из наших колец целых.

Пусть I и I* это простые идеалы, висящие над q в Z[eps] и втором кольце соответственно. Теорема Дедекинда нам сообщает, что в Gal(Q(eps)) можно найти такой элемент S, что S(x) сравнимо с x^q по модулю I для любого x из Z[eps], и аналогичный S* можно найти в Gal(Q(sqrt(D)). Далее у нас имеется сюрьектинвный гомоморфизм их Gal(Q(eps)) = (Z / pZ)^* в Gal(Q(\sqrt(D)) = {-1, 1} (по умножению): четные степени первообразного корня он переводит в 1, а нечетные в -1, то есть этот гомоморфизм это просто (x | p). Если теперь написать, что S переходит в S*, то в точности получится квадратичный закон!

BY Дневник Бродского


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/kusaka_daily/226

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

You may recall that, back when Facebook started changing WhatsApp’s terms of service, a number of news outlets reported on, and even recommended, switching to Telegram. Pavel Durov even said that users should delete WhatsApp “unless you are cool with all of your photos and messages becoming public one day.” But Telegram can’t be described as a more-secure version of WhatsApp. In 2018, Russia banned Telegram although it reversed the prohibition two years later. On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands. "There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives?
from jp


Telegram Дневник Бродского
FROM American