Telegram Group & Telegram Channel
Диагональные орграфы, Кошулевы алгебры и триангуляции гомологических сфер

Магнитудные гомологии орграфа G -- это биградуированная абелева группа MH_{n,l}(G), где n,l -- целые числа. Такая странная теория гомологий орграфов, которая помнит слишком много информации, но непонятно какой. Магнитудные гомологии определяются и для обобщенных метрических пространств, но сейчас я хочу поговорить об орграфах. Графы я буду считать частным случаем орграфов, где каждое неориентированное ребро -- это пара ориентированных рёбер в обе стороны. Расстояние d(x,y) из вершины x в вершину y определяется как длина кратчайшего ориентированного пути, и если пути нет, то расстояние равно бесконечности.

При n=0 ненулевые магнитудные гомологии бывают только при l=0, и
MH_{0,0} -- это свободная абелева группа, ранг которой равен количеству вершин.

При n=1 ненулевые магнитудные гомологии бывают только при l=1, и
MH_{1,1} -- это свободная абелева группа, ранг которой равен количеству рёбер.

При n=2 магнитудные гомологии бывают нетривиальными уже для любого l=2,3,4,...

Однако для многих простых примеров орграфов по непонятной причине оказывается, что магнитудные гомологии сконцентрированы на диагонали. То есть они равны нулю при n не равном l. Такие орграфы назвали диагональными.

Например, неориентированные деревья диагональны, полные графы диагональны. Если взять джойн любых двух графов, то получается диагональный граф. Ещё бокс произведение диагональных графов диагонально. Это уже даёт большой запас диагональных графов. Граф икосаэдра ещё диагонален. Есть и другие интересные маленькие примеры. Но если пробуешь как-то описать все такие графы, то сталкиваешься с тем, что это какая-то жесть. Очень сложный какой-то класс графов. Не получается описать. И мы со Львом тут недавно связали этот класс орграфов с двумя известными темами: Кошулевыми алгебрами, и гомологическими сферами. Это отчасти объясняет сложность этого класса.

--------------------------
Связь с Кошулевыми алгебрами

По орграфу G можно построить такую градуированную алгебру σG над полем k, которую я называю алгеброй расстояний. Как векторное пространство она порождена парами вершин (x,y), таких, что d(x,y)<∞. Умножение определяется так, что (x,y)(y,z) равно
(x,z), если d(x,y)+d(y,z) = d(x,z);
0, если d(x,y)+d(y,z) > d(x,z).
Градуировка определяется так, что степень (x,y) равна d(x,y).

Не очень сложно доказать такую теорему:

ТЕОРЕМА: G диагонален тогда и только тогда, когда алгебра σG Кошулева для любого поля k.

Кошулевы алгебры — это довольно замороченный класс алгебр, внутри класса квадратичных алгебр. Квадратичные алгебры — это понятно, а вот Кошулевы — это жесть. Зато для диагональных графов мы понимаем, что их алгебра расстояний квадратична. Это позволяет описать очень удобное необходимое условие диагональности в комбинаторных терминах.



group-telegram.com/math_dump_of_sepa/225
Create:
Last Update:

Диагональные орграфы, Кошулевы алгебры и триангуляции гомологических сфер

Магнитудные гомологии орграфа G -- это биградуированная абелева группа MH_{n,l}(G), где n,l -- целые числа. Такая странная теория гомологий орграфов, которая помнит слишком много информации, но непонятно какой. Магнитудные гомологии определяются и для обобщенных метрических пространств, но сейчас я хочу поговорить об орграфах. Графы я буду считать частным случаем орграфов, где каждое неориентированное ребро -- это пара ориентированных рёбер в обе стороны. Расстояние d(x,y) из вершины x в вершину y определяется как длина кратчайшего ориентированного пути, и если пути нет, то расстояние равно бесконечности.

При n=0 ненулевые магнитудные гомологии бывают только при l=0, и
MH_{0,0} -- это свободная абелева группа, ранг которой равен количеству вершин.

При n=1 ненулевые магнитудные гомологии бывают только при l=1, и
MH_{1,1} -- это свободная абелева группа, ранг которой равен количеству рёбер.

При n=2 магнитудные гомологии бывают нетривиальными уже для любого l=2,3,4,...

Однако для многих простых примеров орграфов по непонятной причине оказывается, что магнитудные гомологии сконцентрированы на диагонали. То есть они равны нулю при n не равном l. Такие орграфы назвали диагональными.

Например, неориентированные деревья диагональны, полные графы диагональны. Если взять джойн любых двух графов, то получается диагональный граф. Ещё бокс произведение диагональных графов диагонально. Это уже даёт большой запас диагональных графов. Граф икосаэдра ещё диагонален. Есть и другие интересные маленькие примеры. Но если пробуешь как-то описать все такие графы, то сталкиваешься с тем, что это какая-то жесть. Очень сложный какой-то класс графов. Не получается описать. И мы со Львом тут недавно связали этот класс орграфов с двумя известными темами: Кошулевыми алгебрами, и гомологическими сферами. Это отчасти объясняет сложность этого класса.

--------------------------
Связь с Кошулевыми алгебрами

По орграфу G можно построить такую градуированную алгебру σG над полем k, которую я называю алгеброй расстояний. Как векторное пространство она порождена парами вершин (x,y), таких, что d(x,y)<∞. Умножение определяется так, что (x,y)(y,z) равно
(x,z), если d(x,y)+d(y,z) = d(x,z);
0, если d(x,y)+d(y,z) > d(x,z).
Градуировка определяется так, что степень (x,y) равна d(x,y).

Не очень сложно доказать такую теорему:

ТЕОРЕМА: G диагонален тогда и только тогда, когда алгебра σG Кошулева для любого поля k.

Кошулевы алгебры — это довольно замороченный класс алгебр, внутри класса квадратичных алгебр. Квадратичные алгебры — это понятно, а вот Кошулевы — это жесть. Зато для диагональных графов мы понимаем, что их алгебра расстояний квадратична. Это позволяет описать очень удобное необходимое условие диагональности в комбинаторных терминах.

BY Математическая свалка Сепы


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/math_dump_of_sepa/225

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. Founder Pavel Durov says tech is meant to set you free Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram.
from jp


Telegram Математическая свалка Сепы
FROM American