Telegram Group & Telegram Channel
Давайте я чуть-чуть теперь скажу про то, откуда такой словарь берётся (или, точнее, может браться).

Возьмём окружность единичного радиуса, x^2+ (y-1)^2=1, и точку B=(0,0) на ней.
Растянем её во много раз (для начала в 10) вокруг точки B — посмотрим на её окрестность под увеличительным стеклом. Под увеличением окружность — как и любая гладкая кривая — становится всё больше похожа на касательную в той точке, вокруг которой мы увеличиваем. Так что казалось бы, ничего интересного мы так не увидим. Но!
Давайте дополнительно растягивать в направлении, перпендикулярном касательной, ещё во столько же раз. В итоге, если мы по горизонтали растягиваем в 10 раз — по вертикали мы растянем в 100. Под действием такого преобразования окружность начинает становиться всё больше похожей на параболу (в данном случае, на y=x^2/2)!

То есть можно брать верное семейство утверждений, у которых «всё самое интересное» происходит всё ближе и ближе к точке B, и смотреть на них через такое «кривое увеличение». В пределе из эллипсов, в которые мы растягиваем окружность, получится та самая парабола, и предельное утверждение про неё.



group-telegram.com/mathtabletalks/4618
Create:
Last Update:

Давайте я чуть-чуть теперь скажу про то, откуда такой словарь берётся (или, точнее, может браться).

Возьмём окружность единичного радиуса, x^2+ (y-1)^2=1, и точку B=(0,0) на ней.
Растянем её во много раз (для начала в 10) вокруг точки B — посмотрим на её окрестность под увеличительным стеклом. Под увеличением окружность — как и любая гладкая кривая — становится всё больше похожа на касательную в той точке, вокруг которой мы увеличиваем. Так что казалось бы, ничего интересного мы так не увидим. Но!
Давайте дополнительно растягивать в направлении, перпендикулярном касательной, ещё во столько же раз. В итоге, если мы по горизонтали растягиваем в 10 раз — по вертикали мы растянем в 100. Под действием такого преобразования окружность начинает становиться всё больше похожей на параболу (в данном случае, на y=x^2/2)!

То есть можно брать верное семейство утверждений, у которых «всё самое интересное» происходит всё ближе и ближе к точке B, и смотреть на них через такое «кривое увеличение». В пределе из эллипсов, в которые мы растягиваем окружность, получится та самая парабола, и предельное утверждение про неё.

BY Математические байки






Share with your friend now:
group-telegram.com/mathtabletalks/4618

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"Markets were cheering this economic recovery and return to strong economic growth, but the cheers will turn to tears if the inflation outbreak pushes businesses and consumers to the brink of recession," he added. Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country. Telegram Messenger Blocks Navalny Bot During Russian Election In 2018, Russia banned Telegram although it reversed the prohibition two years later. I want a secure messaging app, should I use Telegram?
from jp


Telegram Математические байки
FROM American