Notice: file_put_contents(): Write of 2338 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 10530 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Reliable ML | Telegram Webview: reliable_ml/145 -
Telegram Group & Telegram Channel
Необычные значения в данных
Цикл постов о подготовке данных. Пост 3

Продолжаем серию постов, посвященную подготовке данных. Первый пост тут, второй - тут.

Главное, что надо понять про выбросы - откуда они берутся. Какова природа, каков механизм генерации выбросов?

Фреймворк работы с выбросами

- Выявляем необычные точки
- Формулируем гипотезы: как был сгенерирован выброс
- Проверяем гипотезы
- Принимаем решение: интересны ли нам эти случаи
- Выкидываем или трансформируем необычные данные

Примеры

Выявляем необычные точки

Например, анализируя данные о прокате велосипедов, мы можем увидеть заметную часть (несколько процентов) очень коротких поездок. Поездка меньше 60 секунд - очевидно, аномалия.

Формулируем гипотезу: как был сгенерирован выброс

Гипотеза 1: ошибки/отказы. Велосипед был сломан, пользователь увидел это и вернул в прокат.

Гипотеза 2: дождь. Все, кто собирался ехать, отменяют поездки.

Проверяем гипотезы

Гипотеза 1. Скорее всего, таких случаев было много в первые несколько дней сезона, затем мало, и к концу сезона количество отказов постоянно росло. Короткие поездки случаются подряд с одними и теми же велосипедами. Эти предположения можно проверить на имеющихся данных.

Гипотеза 2. Если гипотеза верна, короткие поездки будут сгруппированы по времени и локации, но не привязаны к конкретному велосипеду.

Принимаем решение: интересны ли нам эти случаи

Интересна ли нам аналитика по отказам и нужно ли нам учитывать дождь в аналитике? Общаемся с бизнес-заказчиком и принимаем решение, исходя из целей продукта, над которым работаем.

Выкидываем или трансформируем необычные данные

Если данные не несут дополнительного велью для продукта - можно удалить, если несут, то смотрим пост 2.

Мораль

Для правильной работы с выбросами нужно сформулировать цель анализа и гипотезу о процессе генерации данных, для остального есть инструменты.

Ваш @Reliable ML



group-telegram.com/reliable_ml/145
Create:
Last Update:

Необычные значения в данных
Цикл постов о подготовке данных. Пост 3

Продолжаем серию постов, посвященную подготовке данных. Первый пост тут, второй - тут.

Главное, что надо понять про выбросы - откуда они берутся. Какова природа, каков механизм генерации выбросов?

Фреймворк работы с выбросами

- Выявляем необычные точки
- Формулируем гипотезы: как был сгенерирован выброс
- Проверяем гипотезы
- Принимаем решение: интересны ли нам эти случаи
- Выкидываем или трансформируем необычные данные

Примеры

Выявляем необычные точки

Например, анализируя данные о прокате велосипедов, мы можем увидеть заметную часть (несколько процентов) очень коротких поездок. Поездка меньше 60 секунд - очевидно, аномалия.

Формулируем гипотезу: как был сгенерирован выброс

Гипотеза 1: ошибки/отказы. Велосипед был сломан, пользователь увидел это и вернул в прокат.

Гипотеза 2: дождь. Все, кто собирался ехать, отменяют поездки.

Проверяем гипотезы

Гипотеза 1. Скорее всего, таких случаев было много в первые несколько дней сезона, затем мало, и к концу сезона количество отказов постоянно росло. Короткие поездки случаются подряд с одними и теми же велосипедами. Эти предположения можно проверить на имеющихся данных.

Гипотеза 2. Если гипотеза верна, короткие поездки будут сгруппированы по времени и локации, но не привязаны к конкретному велосипеду.

Принимаем решение: интересны ли нам эти случаи

Интересна ли нам аналитика по отказам и нужно ли нам учитывать дождь в аналитике? Общаемся с бизнес-заказчиком и принимаем решение, исходя из целей продукта, над которым работаем.

Выкидываем или трансформируем необычные данные

Если данные не несут дополнительного велью для продукта - можно удалить, если несут, то смотрим пост 2.

Мораль

Для правильной работы с выбросами нужно сформулировать цель анализа и гипотезу о процессе генерации данных, для остального есть инструменты.

Ваш @Reliable ML

BY Reliable ML


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/reliable_ml/145

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin. "He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. In 2018, Russia banned Telegram although it reversed the prohibition two years later.
from jp


Telegram Reliable ML
FROM American