Telegram Group & Telegram Channel
🌸Индустриальная оценка LLM в 2024🌸
#nlp #про_nlp #ai_alignment

Бенчмарки, как и версии моделей, постоянно меняются. Какие гарантии, что лучшая LLM на лидерборле действительно окажется лучшей в конкретном индустриальном применении? Никакие

Давно хотела написать этот пост и собрать здесь чек-лист со ссылками на реальные методы оценки, объединяющие полную процедуру LLM evaluation — для индустриальных применений и для рисерча.

Для минимального пайплайна будет достаточно 3 связанных составляющих: релевантные бенчмарки → side by side/preferences metrics → результаты AB — и блокирующих критериев качества вроде safety.

В такой постановке оценки вы сможете опираться на результаты AB (от пользователей) и human preferences (от разметчиков) как на некоторую истину, а с помощью оценки на бенчмарках уменьшите число потенциальных кандидатов, идущих в оценку людьми (оценивать людьми дорого).

На каждом из 3 этапов вы уменьшаете количество экспериментов, которые потенциально дойдут до прода: по бенчмаркам safety отвалятся половина чекпоинтов, потом еще часть после side by side разметчиков, и еще меньше — покажет статзначимый результат на AB. При этом, что важно, корреляции между результатами на 3 этапах может не быть: академические бенчмарки не согласуются с оценкой разметчиков (измеряем разное), а разметчики выдают смещенный результат относительно реальных пользователей (другая демография).

1️⃣ Шаг 1. Бенчмарки и оффлайн метрики.
Сюда отнесем любые оценки на бенчмарках и отслеживание различных аспектов качества.
— Если вы работаете с конкретным применением — выбирайте наиболее релевантные задачи.
— Если вы разрабатываете новую LLM — незазорно взять все.

🟣Бенчмарки
Их слишком много даже для этого поста, поэтому стоит поискать под свою задачу отдельно. Тем не менее, для общего случая:
— Надежные бенчмарки для сравнения на большом числе задач
MMLU (разные предметные знания), HELM (разные типы задач), BigBench (400+ датасетов на разных языках)
— Новые бенчмарки небольшого объема, но со сложными задачами
GAIA, ARC, WildBench
— RAG-бенчмарки и эффективность длинного контекста
Babilong, в остальном не очень стандартизовано (см у Ильи Гусева)
Галлюцинации, фактологичность — для оценки фактологии можно взять мультиязычный фактологический датасет mLAMA (см как мы делали в статье mGPT). Для оценки % галлюцинаций в генерации подойдет любой QA-бенчмарк типа SQuaD и метрика на основе GPT-4.

🟣Автоматические метрики
Отдельные параметры модели, которые мы хотим отследить с помощью обучаемых метрик, классификаторов, reward-моделей на любых данных.
Токсичность (toxicity) — смотрим автоматически, можно ли выдать ответ пользователю, содержит ли он угрозы, сексуальный контент, оскорбления и ненависть. Популярная открытая модель — DistilBert с Kaggle-соревнования.
Вредность/опасность генерации (harmfulness) — можно взять бесплатный Moderation API OpenAI. Категории достаточно стандартные — селф-харм, насилие и т.д.
Полезность (helpfulness) — метрики вроде полезности часто не сочетаются, даже обратно коррелируют с креативностью, позитивным сентиментом и безопасностью ответов, поэтому включать их в оценку нужно обязательно! Можно взять модель на датасете Anthropic HH (helpfulness, harmlessness) как два в одном.
Креативность, Релевантность и др метрики — см пост отсюда. Если брать произвольные нужные нам метрики, можно написать затравку в условную GPT-4 и гонять оценки по заданным параметрам через нее. В LaMDa, например, автоматически оценивается фактологичность и интересность.

🟣Memorization
— Обязательно для применений, где возможно получить иск за IP violation (всякий креатив, маркетинг, а также генерация кода)
— Обязательно для code generation! См исследование проблем StarCoder — 8% кода из обучения воспроизводится наизусть, без оригинальной лицензии.
— Если релизите новую модель, обязательно проверить на data leakage те бенчмарки, на которых вы заявляете метрики модели — см PaLM 2 tech report, а также статью
— В HELM есть проверка на генерацию копирайтного материала — датасет
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/rybolos_channel/1075
Create:
Last Update:

🌸Индустриальная оценка LLM в 2024🌸
#nlp #про_nlp #ai_alignment

Бенчмарки, как и версии моделей, постоянно меняются. Какие гарантии, что лучшая LLM на лидерборле действительно окажется лучшей в конкретном индустриальном применении? Никакие

Давно хотела написать этот пост и собрать здесь чек-лист со ссылками на реальные методы оценки, объединяющие полную процедуру LLM evaluation — для индустриальных применений и для рисерча.

Для минимального пайплайна будет достаточно 3 связанных составляющих: релевантные бенчмарки → side by side/preferences metrics → результаты AB — и блокирующих критериев качества вроде safety.

В такой постановке оценки вы сможете опираться на результаты AB (от пользователей) и human preferences (от разметчиков) как на некоторую истину, а с помощью оценки на бенчмарках уменьшите число потенциальных кандидатов, идущих в оценку людьми (оценивать людьми дорого).

На каждом из 3 этапов вы уменьшаете количество экспериментов, которые потенциально дойдут до прода: по бенчмаркам safety отвалятся половина чекпоинтов, потом еще часть после side by side разметчиков, и еще меньше — покажет статзначимый результат на AB. При этом, что важно, корреляции между результатами на 3 этапах может не быть: академические бенчмарки не согласуются с оценкой разметчиков (измеряем разное), а разметчики выдают смещенный результат относительно реальных пользователей (другая демография).

1️⃣ Шаг 1. Бенчмарки и оффлайн метрики.
Сюда отнесем любые оценки на бенчмарках и отслеживание различных аспектов качества.
— Если вы работаете с конкретным применением — выбирайте наиболее релевантные задачи.
— Если вы разрабатываете новую LLM — незазорно взять все.

🟣Бенчмарки
Их слишком много даже для этого поста, поэтому стоит поискать под свою задачу отдельно. Тем не менее, для общего случая:
— Надежные бенчмарки для сравнения на большом числе задач
MMLU (разные предметные знания), HELM (разные типы задач), BigBench (400+ датасетов на разных языках)
— Новые бенчмарки небольшого объема, но со сложными задачами
GAIA, ARC, WildBench
— RAG-бенчмарки и эффективность длинного контекста
Babilong, в остальном не очень стандартизовано (см у Ильи Гусева)
Галлюцинации, фактологичность — для оценки фактологии можно взять мультиязычный фактологический датасет mLAMA (см как мы делали в статье mGPT). Для оценки % галлюцинаций в генерации подойдет любой QA-бенчмарк типа SQuaD и метрика на основе GPT-4.

🟣Автоматические метрики
Отдельные параметры модели, которые мы хотим отследить с помощью обучаемых метрик, классификаторов, reward-моделей на любых данных.
Токсичность (toxicity) — смотрим автоматически, можно ли выдать ответ пользователю, содержит ли он угрозы, сексуальный контент, оскорбления и ненависть. Популярная открытая модель — DistilBert с Kaggle-соревнования.
Вредность/опасность генерации (harmfulness) — можно взять бесплатный Moderation API OpenAI. Категории достаточно стандартные — селф-харм, насилие и т.д.
Полезность (helpfulness) — метрики вроде полезности часто не сочетаются, даже обратно коррелируют с креативностью, позитивным сентиментом и безопасностью ответов, поэтому включать их в оценку нужно обязательно! Можно взять модель на датасете Anthropic HH (helpfulness, harmlessness) как два в одном.
Креативность, Релевантность и др метрики — см пост отсюда. Если брать произвольные нужные нам метрики, можно написать затравку в условную GPT-4 и гонять оценки по заданным параметрам через нее. В LaMDa, например, автоматически оценивается фактологичность и интересность.

🟣Memorization
— Обязательно для применений, где возможно получить иск за IP violation (всякий креатив, маркетинг, а также генерация кода)
— Обязательно для code generation! См исследование проблем StarCoder — 8% кода из обучения воспроизводится наизусть, без оригинальной лицензии.
— Если релизите новую модель, обязательно проверить на data leakage те бенчмарки, на которых вы заявляете метрики модели — см PaLM 2 tech report, а также статью
— В HELM есть проверка на генерацию копирайтного материала — датасет

BY Kali Novskaya




Share with your friend now:
group-telegram.com/rybolos_channel/1075

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. During the operations, Sebi officials seized various records and documents, including 34 mobile phones, six laptops, four desktops, four tablets, two hard drive disks and one pen drive from the custody of these persons. He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe.
from jp


Telegram Kali Novskaya
FROM American