Telegram Group & Telegram Channel
ARC Benchmark

Многие бенчмарки (то есть наборы данных с размеченными ожидаемыми ответами, признанные прокси-оценками качества) для LLM справедливо можно критиковать за то, что они по сути тестируют запоминание. Самый простой пример — бенчмарки вопросов-ответов (или тестов с опциями ответа, но не все): чтобы ответить на вопрос «в каком году было то и то?» не нужно быть гением мысли или обладать выдающимся интеллектом. Достаточно просто запомнить факт.

По мере усложнения задач в какой-то момент мы натыкаемся на дилемму — что является запоминанием, а что рассуждением модели? Если я придумываю новую математическую задачку для средней школы, которая решается в 4-5 действий, и модель её решает — какая здесь доля запоминания, а какая интеллекта/рассуждений? Модель могла видеть много схожих задач (больше, чем дети при обучении в школе), но не конкретно эту и даже не другую такую же с идентичным принципом решения.

И после преодоления этого региона, в теории, начинаются задачи, связанные с очень банальными знаниями, но требующие именно рассуждений. Вот ARC Benchmark, по мнению его создателя Francois Chollet, такой. С ним неплохо справляются дети, на 90%+ решают взрослые, но ни одна модель или даже система ни 4 года назад, ни сегодня не показывает близких результатов.

Как выглядит бенчмарк? Это сотни задачек по типу тех, что указаны на картинке, или которые вы можете покликать тут. Цель — по нескольким примерам найти паттерн, и применить его к новой ситуации. Francois считает, что паттерны и тип задачи тут очень редки, чтобы не допустить запоминания, но в то же время человек может разобраться.

Chollet вот 5 лет назад статью написал про свои взгляды и то, почему именно так хочет тестировать модели, и про то, почему нахождение новых паттернов из очень маленького набора данных и умение их применять — это мера интеллекта.

В среднем человек решает 85% задач (когда выходная картинка для нового примера идентично авторской), а LLM-ки единицы процентов. Лучшие системы (заточенные под схожий класс задач) добиваются ~34%.



group-telegram.com/seeallochnaya/1523
Create:
Last Update:

ARC Benchmark

Многие бенчмарки (то есть наборы данных с размеченными ожидаемыми ответами, признанные прокси-оценками качества) для LLM справедливо можно критиковать за то, что они по сути тестируют запоминание. Самый простой пример — бенчмарки вопросов-ответов (или тестов с опциями ответа, но не все): чтобы ответить на вопрос «в каком году было то и то?» не нужно быть гением мысли или обладать выдающимся интеллектом. Достаточно просто запомнить факт.

По мере усложнения задач в какой-то момент мы натыкаемся на дилемму — что является запоминанием, а что рассуждением модели? Если я придумываю новую математическую задачку для средней школы, которая решается в 4-5 действий, и модель её решает — какая здесь доля запоминания, а какая интеллекта/рассуждений? Модель могла видеть много схожих задач (больше, чем дети при обучении в школе), но не конкретно эту и даже не другую такую же с идентичным принципом решения.

И после преодоления этого региона, в теории, начинаются задачи, связанные с очень банальными знаниями, но требующие именно рассуждений. Вот ARC Benchmark, по мнению его создателя Francois Chollet, такой. С ним неплохо справляются дети, на 90%+ решают взрослые, но ни одна модель или даже система ни 4 года назад, ни сегодня не показывает близких результатов.

Как выглядит бенчмарк? Это сотни задачек по типу тех, что указаны на картинке, или которые вы можете покликать тут. Цель — по нескольким примерам найти паттерн, и применить его к новой ситуации. Francois считает, что паттерны и тип задачи тут очень редки, чтобы не допустить запоминания, но в то же время человек может разобраться.

Chollet вот 5 лет назад статью написал про свои взгляды и то, почему именно так хочет тестировать модели, и про то, почему нахождение новых паттернов из очень маленького набора данных и умение их применять — это мера интеллекта.

В среднем человек решает 85% задач (когда выходная картинка для нового примера идентично авторской), а LLM-ки единицы процентов. Лучшие системы (заточенные под схожий класс задач) добиваются ~34%.

BY Сиолошная






Share with your friend now:
group-telegram.com/seeallochnaya/1523

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. I want a secure messaging app, should I use Telegram? NEWS "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said.
from jp


Telegram Сиолошная
FROM American