Telegram Group & Telegram Channel
Network Renormalization

The renormalization group (RG) is a powerful theoretical framework developed to consistently transform the description of configurations of systems with many degrees of freedom, along with the associated model parameters and coupling constants, across different levels of resolution. It also provides a way to identify critical points of phase transitions and study the system's behaviour around them by distinguishing between relevant and irrelevant details, the latter being unnecessary to describe the emergent macroscopic properties. In traditional physical applications, the RG largely builds on the notions of homogeneity, symmetry, geometry and locality to define metric distances, scale transformations and self-similar coarse-graining schemes. More recently, various approaches have tried to extend RG concepts to the ubiquitous realm of complex networks where explicit geometric coordinates do not necessarily exist, nodes and subgraphs can have very different properties, and homogeneous lattice-like symmetries are absent. The strong heterogeneity of real-world networks significantly complicates the definition of consistent renormalization procedures. In this review, we discuss the main attempts, the most important advances, and the remaining open challenges on the road to network renormalization.

https://arxiv.org/abs/2412.12988



group-telegram.com/ComplexSys/5808
Create:
Last Update:

Network Renormalization

The renormalization group (RG) is a powerful theoretical framework developed to consistently transform the description of configurations of systems with many degrees of freedom, along with the associated model parameters and coupling constants, across different levels of resolution. It also provides a way to identify critical points of phase transitions and study the system's behaviour around them by distinguishing between relevant and irrelevant details, the latter being unnecessary to describe the emergent macroscopic properties. In traditional physical applications, the RG largely builds on the notions of homogeneity, symmetry, geometry and locality to define metric distances, scale transformations and self-similar coarse-graining schemes. More recently, various approaches have tried to extend RG concepts to the ubiquitous realm of complex networks where explicit geometric coordinates do not necessarily exist, nodes and subgraphs can have very different properties, and homogeneous lattice-like symmetries are absent. The strong heterogeneity of real-world networks significantly complicates the definition of consistent renormalization procedures. In this review, we discuss the main attempts, the most important advances, and the remaining open challenges on the road to network renormalization.

https://arxiv.org/abs/2412.12988

BY Complex Systems Studies




Share with your friend now:
group-telegram.com/ComplexSys/5808

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Emerson Brooking, a disinformation expert at the Atlantic Council's Digital Forensic Research Lab, said: "Back in the Wild West period of content moderation, like 2014 or 2015, maybe they could have gotten away with it, but it stands in marked contrast with how other companies run themselves today." In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. For tech stocks, “the main thing is yields,” Essaye said. The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat.
from kr


Telegram Complex Systems Studies
FROM American