Telegram Group & Telegram Channel
📍کاربرد هوش مصنوعی در طراحی و بهینه‌سازی سازه‌ها - بخش دوم و پایانی:

یادآوری: لینک بخش اول

● روش‌های سنتی تشخیص آسیب‌های سازه‌ای مانند بازرسی‌های بصری، زمان‌بر و پرهزینه‌ هستند و هیچوقت بطور کامل دقیق نیستند. هوش مصنوعی، به‌ویژه الگوریتم‌های یادگیری ماشین و بینایی کامپیوتر، می‌تواند بطور خودکار نقص‌ها را در سازه‌ها شناسایی کند. برای مثال، الگوریتم‌های پردازش تصویر می‌توانند تصاویر گرفته شده از سطح یک پل یا ساختمان را تحلیل کرده و ترک‌ها، خوردگی‌ها یا تغییرشکل‌های غیرعادی را شناسایی کنند. استفاده از شبکه‌های عصبی کانولوشنی (Convolutional Neural Network - CNN) برای تحلیل تصاویر یا داده‌های سنسورها می‌تواند دقت تشخیص را به طرز قابل توجهی افزایش دهد و هزینه‌های بازرسی و نگهداری را کم کنند.

● هوش مصنوعی می‌تواند به مدیریت هوشمندانه دارایی‌های زیرساختی مانند پل‌ها، تونل‌ها و ساختمان‌ها کمک کند. با استفاده از داده‌های جمع‌آوری شده از سنسورها و سیستم‌های اینترنت اشیا (IoT)، الگوریتم‌های یادگیری ماشین می‌توانند زمان وقوع خرابی‌ها و نیاز به تعمیرات را پیش‌بینی کنند. به عنوان مثال، می‌توان داده‌های سنسورهای فشار، دما و ارتعاشات را تحلیل کرد تا پیش‌بینی کنیم که چه زمانی یک خرابی در پل رخ خواهد داد و اقدامات پیشگیرانه را در زمان مناسب انجام دهیم.
هوش مصنوعی در کشف و توسعه مصالح جدید برای سازه‌ها نیز نقش دارد. از طریق تحلیل داده‌های مربوط به ترکیبات مختلف مواد و آزمایشات مربوط به خواص مکانیکی و شیمیایی آنها، مدل‌های یادگیری ماشین می‌توانند ترکیب‌های بهینه‌ای از مواد را پیشنهاد دهند که دارای ویژگی‌های مطلوبی مانند مقاومت بالا، وزن کم، هزینه پایین و دوام بالا هستند. برای مثال، می‌توان از هوش مصنوعی برای طراحی بتن‌های جدیدی استفاده کرد که دارای مقاومت بالا و ویژگی‌های بهبود یافته برای استفاده در شرایط آب و هوایی خاص باشند.

● مدیریت ریسک یکی از مهم‌ترین بخش‌های طراحی و ساخت سازه‌ها است. هوش مصنوعی می‌تواند به شناسایی و تحلیل ریسک‌های مرتبط با پروژه‌های ساخت و ساز کمک کند. مدل‌های یادگیری ماشین می‌توانند با تحلیل داده‌های تاریخی، سناریوهای مختلف ریسک را شبیه‌سازی و احتمال وقوع رویدادهای خطرناک را پیش‌بینی کنند. به عنوان مثال، با استفاده از داده‌های مربوط به پروژه‌های گذشته، مدل‌های یادگیری ماشین می‌توانند زمان‌ها و مکان‌هایی که احتمال وقوع حوادث یا خطاهای ساخت بیشتر است را پیش‌بینی کرده و به این ترتیب به بهبود ایمنی پروژه‌ها کمک کنند.

● طراحی سازه‌های هوشمند یکی دیگر از حوزه‌های مهم است که در آن هوش مصنوعی کاربرد دارد. سازه‌های هوشمند شامل اجزائی هستند که می‌توانند بطور خودکار به تغییرات محیطی یا شرایط بارگذاری واکنش نشان دهند. این سازه‌ها معمولاً از سیستم‌های حسگر و محرک استفاده می‌کنند که با الگوریتم‌های هوش مصنوعی ترکیب شده‌اند. برای مثال، می‌توان پل‌هایی طراحی کرد که با استفاده از سنسورهای تعبیه‌شده، ارتعاشات ناشی از ترافیک یا زلزله را شناسایی کرده و سیستم‌های کاهش ارتعاش را بطور خودکار فعال کنند یا ساختمان‌هایی که سیستم‌های گرمایشی و سرمایشی خود را بر اساس تحلیل داده‌های دما و رطوبت بهینه کنند.

@EngSociety



group-telegram.com/EngSociety/871
Create:
Last Update:

📍کاربرد هوش مصنوعی در طراحی و بهینه‌سازی سازه‌ها - بخش دوم و پایانی:

یادآوری: لینک بخش اول

● روش‌های سنتی تشخیص آسیب‌های سازه‌ای مانند بازرسی‌های بصری، زمان‌بر و پرهزینه‌ هستند و هیچوقت بطور کامل دقیق نیستند. هوش مصنوعی، به‌ویژه الگوریتم‌های یادگیری ماشین و بینایی کامپیوتر، می‌تواند بطور خودکار نقص‌ها را در سازه‌ها شناسایی کند. برای مثال، الگوریتم‌های پردازش تصویر می‌توانند تصاویر گرفته شده از سطح یک پل یا ساختمان را تحلیل کرده و ترک‌ها، خوردگی‌ها یا تغییرشکل‌های غیرعادی را شناسایی کنند. استفاده از شبکه‌های عصبی کانولوشنی (Convolutional Neural Network - CNN) برای تحلیل تصاویر یا داده‌های سنسورها می‌تواند دقت تشخیص را به طرز قابل توجهی افزایش دهد و هزینه‌های بازرسی و نگهداری را کم کنند.

● هوش مصنوعی می‌تواند به مدیریت هوشمندانه دارایی‌های زیرساختی مانند پل‌ها، تونل‌ها و ساختمان‌ها کمک کند. با استفاده از داده‌های جمع‌آوری شده از سنسورها و سیستم‌های اینترنت اشیا (IoT)، الگوریتم‌های یادگیری ماشین می‌توانند زمان وقوع خرابی‌ها و نیاز به تعمیرات را پیش‌بینی کنند. به عنوان مثال، می‌توان داده‌های سنسورهای فشار، دما و ارتعاشات را تحلیل کرد تا پیش‌بینی کنیم که چه زمانی یک خرابی در پل رخ خواهد داد و اقدامات پیشگیرانه را در زمان مناسب انجام دهیم.
هوش مصنوعی در کشف و توسعه مصالح جدید برای سازه‌ها نیز نقش دارد. از طریق تحلیل داده‌های مربوط به ترکیبات مختلف مواد و آزمایشات مربوط به خواص مکانیکی و شیمیایی آنها، مدل‌های یادگیری ماشین می‌توانند ترکیب‌های بهینه‌ای از مواد را پیشنهاد دهند که دارای ویژگی‌های مطلوبی مانند مقاومت بالا، وزن کم، هزینه پایین و دوام بالا هستند. برای مثال، می‌توان از هوش مصنوعی برای طراحی بتن‌های جدیدی استفاده کرد که دارای مقاومت بالا و ویژگی‌های بهبود یافته برای استفاده در شرایط آب و هوایی خاص باشند.

● مدیریت ریسک یکی از مهم‌ترین بخش‌های طراحی و ساخت سازه‌ها است. هوش مصنوعی می‌تواند به شناسایی و تحلیل ریسک‌های مرتبط با پروژه‌های ساخت و ساز کمک کند. مدل‌های یادگیری ماشین می‌توانند با تحلیل داده‌های تاریخی، سناریوهای مختلف ریسک را شبیه‌سازی و احتمال وقوع رویدادهای خطرناک را پیش‌بینی کنند. به عنوان مثال، با استفاده از داده‌های مربوط به پروژه‌های گذشته، مدل‌های یادگیری ماشین می‌توانند زمان‌ها و مکان‌هایی که احتمال وقوع حوادث یا خطاهای ساخت بیشتر است را پیش‌بینی کرده و به این ترتیب به بهبود ایمنی پروژه‌ها کمک کنند.

● طراحی سازه‌های هوشمند یکی دیگر از حوزه‌های مهم است که در آن هوش مصنوعی کاربرد دارد. سازه‌های هوشمند شامل اجزائی هستند که می‌توانند بطور خودکار به تغییرات محیطی یا شرایط بارگذاری واکنش نشان دهند. این سازه‌ها معمولاً از سیستم‌های حسگر و محرک استفاده می‌کنند که با الگوریتم‌های هوش مصنوعی ترکیب شده‌اند. برای مثال، می‌توان پل‌هایی طراحی کرد که با استفاده از سنسورهای تعبیه‌شده، ارتعاشات ناشی از ترافیک یا زلزله را شناسایی کرده و سیستم‌های کاهش ارتعاش را بطور خودکار فعال کنند یا ساختمان‌هایی که سیستم‌های گرمایشی و سرمایشی خود را بر اساس تحلیل داده‌های دما و رطوبت بهینه کنند.

@EngSociety

BY کانال صنفی جامعه مهندسی


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/EngSociety/871

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.” In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. Founder Pavel Durov says tech is meant to set you free These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted.
from kr


Telegram کانال صنفی جامعه مهندسی
FROM American