Telegram Group & Telegram Channel
Forwarded from Nikita Trifonov
1е место public LB
Мое решение - стэкинг, где на первом уровне обычная модель, на втором уровне - модель, которая улучшает предсказания первой, эксплуатируя лик
Модель первого уровня - coverhunter (https://arxiv.org/pdf/2306.09025v1 , код модели из https://github.com/alanngnet/CoverHunterMPS с минорными твиками). Вместо лоссов из статьи использовал аркфейс с margin, зависящей от кол-ва примеров класса. Реализовал аугментации из статьи - XYMasking, сдвиг спектрограммы по вертикали, изменение скорости, изменение громкости. Модель первого уровня довел примерно до 0.608 public LB

Суть лика - айдишники в test_ids.npy не зашафлены, треки, которые являются каверами друг друга, идут непосредственно друг за другом. Это легко увидеть, если посчитать эмбеддинги моделью первого уровня для первой тысячи треков из test_ids.npy и построить матрицу попарных расстояний между ними (см. картинку). То есть взаимное расположение айдишников в test_ids.npy - важная фича, если треки следуют непосредственно друг за другом, они скорее всего являются кавером, а если между ними 2000 других айдишников - точно нет. Заэксплуатиривоть это можно разными способами, например CatBoostRanker на двух фичах - расстояние между эмбеддингами и расстояние между айдишниками - давал порядка 0.98 public LB. Я ожидал, что больше людей найдет лик, поэтому оверкиллил эту часть: обучал u-net, которому на вход подается матрица попарных расстояний, а выход трактуем как матрицу скоров (одна строка - один трек, для которого нужно найти каверы, а сами значения в строке - это скоры треков, находящихся слева и справа от данного в списке айдишников). Использовал лосс для задачи ранжирования из pytorchltr; реализовал маскирование, чтобы учитывать для каждого трека ровно по 100 соседей слева и справа из списка айдишников; аугментацию для трейна за счет шаффлинга порядка клик и порядка треков внутри клик.



group-telegram.com/abacabadabacaba404/68
Create:
Last Update:

1е место public LB
Мое решение - стэкинг, где на первом уровне обычная модель, на втором уровне - модель, которая улучшает предсказания первой, эксплуатируя лик
Модель первого уровня - coverhunter (https://arxiv.org/pdf/2306.09025v1 , код модели из https://github.com/alanngnet/CoverHunterMPS с минорными твиками). Вместо лоссов из статьи использовал аркфейс с margin, зависящей от кол-ва примеров класса. Реализовал аугментации из статьи - XYMasking, сдвиг спектрограммы по вертикали, изменение скорости, изменение громкости. Модель первого уровня довел примерно до 0.608 public LB

Суть лика - айдишники в test_ids.npy не зашафлены, треки, которые являются каверами друг друга, идут непосредственно друг за другом. Это легко увидеть, если посчитать эмбеддинги моделью первого уровня для первой тысячи треков из test_ids.npy и построить матрицу попарных расстояний между ними (см. картинку). То есть взаимное расположение айдишников в test_ids.npy - важная фича, если треки следуют непосредственно друг за другом, они скорее всего являются кавером, а если между ними 2000 других айдишников - точно нет. Заэксплуатиривоть это можно разными способами, например CatBoostRanker на двух фичах - расстояние между эмбеддингами и расстояние между айдишниками - давал порядка 0.98 public LB. Я ожидал, что больше людей найдет лик, поэтому оверкиллил эту часть: обучал u-net, которому на вход подается матрица попарных расстояний, а выход трактуем как матрицу скоров (одна строка - один трек, для которого нужно найти каверы, а сами значения в строке - это скоры треков, находящихся слева и справа от данного в списке айдишников). Использовал лосс для задачи ранжирования из pytorchltr; реализовал маскирование, чтобы учитывать для каждого трека ровно по 100 соседей слева и справа из списка айдишников; аугментацию для трейна за счет шаффлинга порядка клик и порядка треков внутри клик.

BY adapt compete evolve or die


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/abacabadabacaba404/68

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. "There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said. "There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices. The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform.
from kr


Telegram adapt compete evolve or die
FROM American