Telegram Group & Telegram Channel
Что такое Data/ AI Product Management и почему у компаниях сейчас такой спрос на это?

Всем хорошего дня!
Читая моё описание канала, а также часть постов, возможно, у некоторых формируется один вопрос: что такое Data/AI продакт менеджмент, и кому это нужно?


Давайте разберемся!
В отличие от «обычных» продакт менеджеров, Data/AI ПМ-ы фокусируются на разработке «data products». Data product — это сервис или приложение, которое фундаментально полагается на обработку данных и/или машинное обучение, чтобы решить определенную бизнес-проблему или облегчить принятие решений. Примеры таких «data products» могут включать, например, динамические дашборды для стейкхолдеров, приложения на базе больших языковых моделей (LLM) или статистических моделе. Data products отличаются от «обычных» софтверных продуктов с точки зрения разработки и требуют других специалистов для их создания и управления ими. Одним из таких специалистов является именно Data/AI ПМ. От Data/AI ПМ-ов требуется глубокое понимание сферы ИИ с техническим бэкграундом, а также глубокие знания в сфере бизнеса и монетизации.

➡️Кому это нужно?
На самом деле, специалисты, которые умеют монетизировать ИИ, нужны абсолютно всем фирмам, которые строят продукты с использованием данных. Спрос на таких специалистов сейчас растет быстрее, чем на рядовых инженеров. На данный момент в LinkedIn в США больше открытых вакансий на AI Product Manager, чем на Data Engineer, Data Scientist или Data Analyst. Интеграция ИИ в продакт менеджмент и девелопмент — это не временное явление. Важно подчеркнуть, что сейчас происходит фундаментальный сдвиг в том, как строятся продукты. Есть огромная разница между обладанием данными или продвинутыми моделями и способностью их монетизировать. В конце 2023 года MIT Sloan Management Review выпустил статью про восходящую роль «коннекторов в Data Science» — роль, которая соединяет команды в бизнесе и ИИ, обеспечивая прибыль.

➡️Почему именно сейчас?
При подробном взгляде становится понятно, что последние десятилетия полны провалами ИИ юз-кейсов, как у legacy, так и у AI-first компаний. Например John Deer решили выпустить полу-автономные тракторы с кучей сенсоров на базе AI. Но клиентам это было не нужно и мгновенно вспыхнул спрос на б/у тракторы без искуственного интеллекта.

Считается, что около 87% всех Data Science проектов не доходят до продакшена, а даже те, что доходят, слишком медленны и дороги. Долгое время в бизнесе это считалось ОК. Также понадобилось время, чтобы понять, что механизм, при котором DS команда сама ищет для бизнеса ценные возможности использования данных и ИИ, не работает. Об этом я тоже скоро напишу отдельный пост!

Но времена поменялись, технология созрела, и инвесторы требуют результатов — и требуют их быстро. Это, конечно, в частности связано с экономическими факторами: деньги уже не раздают так легко, как в «лихие времена» на протяжении 10 лет до 2021 года. Факторы, такие как повышенная инфляция, ужесточение монетарной политики и повышение процентных ставок, жестко поменяли инвестиционный климат среди инвесторов и акционеров. Теперь за пару слайдов с заглавными буквами «AI-powered» никто свои деньги не понесет — нужно показать рабочую монетизацию. Именно на этом фокусируется Data/AI Product Management.

Кому интересно погрузиться глубже в сферу, где бизнес и ИИ соединяются, скоро будет пост со списком книг, которые стоит прочитать, если хочется разобраться в Data Products.

#datapm #aipm
@ainastia
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ainastia/13
Create:
Last Update:

Что такое Data/ AI Product Management и почему у компаниях сейчас такой спрос на это?

Всем хорошего дня!
Читая моё описание канала, а также часть постов, возможно, у некоторых формируется один вопрос: что такое Data/AI продакт менеджмент, и кому это нужно?


Давайте разберемся!
В отличие от «обычных» продакт менеджеров, Data/AI ПМ-ы фокусируются на разработке «data products». Data product — это сервис или приложение, которое фундаментально полагается на обработку данных и/или машинное обучение, чтобы решить определенную бизнес-проблему или облегчить принятие решений. Примеры таких «data products» могут включать, например, динамические дашборды для стейкхолдеров, приложения на базе больших языковых моделей (LLM) или статистических моделе. Data products отличаются от «обычных» софтверных продуктов с точки зрения разработки и требуют других специалистов для их создания и управления ими. Одним из таких специалистов является именно Data/AI ПМ. От Data/AI ПМ-ов требуется глубокое понимание сферы ИИ с техническим бэкграундом, а также глубокие знания в сфере бизнеса и монетизации.

➡️Кому это нужно?
На самом деле, специалисты, которые умеют монетизировать ИИ, нужны абсолютно всем фирмам, которые строят продукты с использованием данных. Спрос на таких специалистов сейчас растет быстрее, чем на рядовых инженеров. На данный момент в LinkedIn в США больше открытых вакансий на AI Product Manager, чем на Data Engineer, Data Scientist или Data Analyst. Интеграция ИИ в продакт менеджмент и девелопмент — это не временное явление. Важно подчеркнуть, что сейчас происходит фундаментальный сдвиг в том, как строятся продукты. Есть огромная разница между обладанием данными или продвинутыми моделями и способностью их монетизировать. В конце 2023 года MIT Sloan Management Review выпустил статью про восходящую роль «коннекторов в Data Science» — роль, которая соединяет команды в бизнесе и ИИ, обеспечивая прибыль.

➡️Почему именно сейчас?
При подробном взгляде становится понятно, что последние десятилетия полны провалами ИИ юз-кейсов, как у legacy, так и у AI-first компаний. Например John Deer решили выпустить полу-автономные тракторы с кучей сенсоров на базе AI. Но клиентам это было не нужно и мгновенно вспыхнул спрос на б/у тракторы без искуственного интеллекта.

Считается, что около 87% всех Data Science проектов не доходят до продакшена, а даже те, что доходят, слишком медленны и дороги. Долгое время в бизнесе это считалось ОК. Также понадобилось время, чтобы понять, что механизм, при котором DS команда сама ищет для бизнеса ценные возможности использования данных и ИИ, не работает. Об этом я тоже скоро напишу отдельный пост!

Но времена поменялись, технология созрела, и инвесторы требуют результатов — и требуют их быстро. Это, конечно, в частности связано с экономическими факторами: деньги уже не раздают так легко, как в «лихие времена» на протяжении 10 лет до 2021 года. Факторы, такие как повышенная инфляция, ужесточение монетарной политики и повышение процентных ставок, жестко поменяли инвестиционный климат среди инвесторов и акционеров. Теперь за пару слайдов с заглавными буквами «AI-powered» никто свои деньги не понесет — нужно показать рабочую монетизацию. Именно на этом фокусируется Data/AI Product Management.

Кому интересно погрузиться глубже в сферу, где бизнес и ИИ соединяются, скоро будет пост со списком книг, которые стоит прочитать, если хочется разобраться в Data Products.

#datapm #aipm
@ainastia

BY Anastasia.ai – Tech Entrepreneur in🇨🇭




Share with your friend now:
group-telegram.com/ainastia/13

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so. The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future.
from kr


Telegram Anastasia.ai – Tech Entrepreneur in🇨🇭
FROM American