Notice: file_put_contents(): Write of 1991 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50
Warning: file_put_contents(): Only 12288 of 14279 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50 مرکز هوشمصنوعی آیتِک | Telegram Webview: aitechinstitute/63 -
⭐️سطحبندی و سرفصلهای بسته آموزشی کاربردی هوش مصنوعی در سلامت :
🚀❗️سطح ۳:
✍✍ پایتون، یادگیری ماشین، پردازش تصویر و سیگنال و یادگیری عمیق
🔔پیشنیاز برای سطوح بعدی
💡(این بخش هم برای پزشکان و هم برای مهندسان مناسب است)
✔️ آشنایی با پایتون(Python)
✔️ آشنایی با انواع دادهها (Data types)
✔️ یادگیری ماشین (Machine Learning)
✔️ یادگیری عمیق (Deep Learning)
✔️آموزش نحوه پیادهسازی مدلهای شبکههای عصبی عمیق و کاربرد آنها در تحلیل تصاویر و سیگنالهای پزشکی
✔️ آشنایی با مدلهای مولد (Generative Models) و کاربرد آنها در پزشکی
✔️ معرفی مدلهای زبانی بزرگ (Large Language Models - LLMs) مانند GPT و کاربرد آنها در شبیهسازی و تحلیل دادههای پزشکی
✔️ آشنایی با سیستمهای توصیهگر و چگونگی استفاده از آنها در بهبود درمان و ارائه خدمات به بیماران
✔️پروژه عملی پایانی
✔️ بهکارگیری ابزارهای پایتون و کتابخانههای یادگیری ماشین و یادگیری عمیق برای تحلیل دادههای واقعی پزشکی و تولید نتایج قابل اعتماد
✔️ ارزیابی مدلها بر اساس معیارهای دقت (Accuracy)، حساسیت (Sensitivity) و ویژگی (Specificity) و بهبود عملکرد مدلها از طریق تکنیکهای بهینهسازی و تنظیم پارامترها
⭐️سطحبندی و سرفصلهای بسته آموزشی کاربردی هوش مصنوعی در سلامت :
🚀❗️سطح ۳:
✍✍ پایتون، یادگیری ماشین، پردازش تصویر و سیگنال و یادگیری عمیق
🔔پیشنیاز برای سطوح بعدی
💡(این بخش هم برای پزشکان و هم برای مهندسان مناسب است)
✔️ آشنایی با پایتون(Python)
✔️ آشنایی با انواع دادهها (Data types)
✔️ یادگیری ماشین (Machine Learning)
✔️ یادگیری عمیق (Deep Learning)
✔️آموزش نحوه پیادهسازی مدلهای شبکههای عصبی عمیق و کاربرد آنها در تحلیل تصاویر و سیگنالهای پزشکی
✔️ آشنایی با مدلهای مولد (Generative Models) و کاربرد آنها در پزشکی
✔️ معرفی مدلهای زبانی بزرگ (Large Language Models - LLMs) مانند GPT و کاربرد آنها در شبیهسازی و تحلیل دادههای پزشکی
✔️ آشنایی با سیستمهای توصیهگر و چگونگی استفاده از آنها در بهبود درمان و ارائه خدمات به بیماران
✔️پروژه عملی پایانی
✔️ بهکارگیری ابزارهای پایتون و کتابخانههای یادگیری ماشین و یادگیری عمیق برای تحلیل دادههای واقعی پزشکی و تولید نتایج قابل اعتماد
✔️ ارزیابی مدلها بر اساس معیارهای دقت (Accuracy)، حساسیت (Sensitivity) و ویژگی (Specificity) و بهبود عملکرد مدلها از طریق تکنیکهای بهینهسازی و تنظیم پارامترها
Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information.
from kr