Notice: file_put_contents(): Write of 1935 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 10127 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Анси логика | Telegram Webview: ansi_logic/103 -
Telegram Group & Telegram Channel
Перекроить круг в квадрат пытались ещё древние греки, и только спустя сотни лет выяснилось, что циркулем и линейкой сделать это невозможно (если коротко, то причина в трансцендентности числа пи). "Тогда ладно" - сказал Тарский и поставил такой вопрос: можно ли порезать круг на конечное число кусочков и собрать из них квадрат? Не спешите давать отрицательный ответ на этот вопрос, потому что:
- теорема Бойяи-Гервина утверждает, что если взять любые многоугольники равной площади, то один из них можно порезать на конечное число кусочков и собрать другой;
- можно разрезать круг на 2 (всего 2!) кусочка, один из них гомотетично растянуть и собрать квадрат (очень красивая задача, на мой взгляд. впрочем, этот же трюк работает с любыми 2 подмножествами плоскости, имеющими непустую внутренность);
- парадокс Банаха-Тарского: можно разрезать шар на 5 кусочков и собрать два таких же шара. Хотя аналогичная конструкция на плоскости невозможна (квадрат должен быть той же площади, что и круг), это наводит на мысль, ну мало ли что бывает.

Если разрешить резать только по прямым и дугам окружностей, то перекроить круг в квадрат не выйдет (это почти очевидно). Разрешаем большее: можно резать по любым "хорошим" (хороший значит жордановый) кривым. Тоже не получится, доказать уже сильно сложнее. Если приплести аксиому выбора, то порезать удастся на примерно 10^40 кусков. Неконструктивно, но порезали! Вот обзорная статья 2003 года про это всё.

Удивительно, но в 2022 году оказалось, что можно порезать круг, чтобы собрать потом квадрат, вполне себе конструктивно на БОРЕЛЕВСКИЕ КУСКИ!!! (А если кусок борелевский, значит, он измеримый.) Вот это построение. Оч сложно, но какова красота 🥰



group-telegram.com/ansi_logic/103
Create:
Last Update:

Перекроить круг в квадрат пытались ещё древние греки, и только спустя сотни лет выяснилось, что циркулем и линейкой сделать это невозможно (если коротко, то причина в трансцендентности числа пи). "Тогда ладно" - сказал Тарский и поставил такой вопрос: можно ли порезать круг на конечное число кусочков и собрать из них квадрат? Не спешите давать отрицательный ответ на этот вопрос, потому что:
- теорема Бойяи-Гервина утверждает, что если взять любые многоугольники равной площади, то один из них можно порезать на конечное число кусочков и собрать другой;
- можно разрезать круг на 2 (всего 2!) кусочка, один из них гомотетично растянуть и собрать квадрат (очень красивая задача, на мой взгляд. впрочем, этот же трюк работает с любыми 2 подмножествами плоскости, имеющими непустую внутренность);
- парадокс Банаха-Тарского: можно разрезать шар на 5 кусочков и собрать два таких же шара. Хотя аналогичная конструкция на плоскости невозможна (квадрат должен быть той же площади, что и круг), это наводит на мысль, ну мало ли что бывает.

Если разрешить резать только по прямым и дугам окружностей, то перекроить круг в квадрат не выйдет (это почти очевидно). Разрешаем большее: можно резать по любым "хорошим" (хороший значит жордановый) кривым. Тоже не получится, доказать уже сильно сложнее. Если приплести аксиому выбора, то порезать удастся на примерно 10^40 кусков. Неконструктивно, но порезали! Вот обзорная статья 2003 года про это всё.

Удивительно, но в 2022 году оказалось, что можно порезать круг, чтобы собрать потом квадрат, вполне себе конструктивно на БОРЕЛЕВСКИЕ КУСКИ!!! (А если кусок борелевский, значит, он измеримый.) Вот это построение. Оч сложно, но какова красота 🥰

BY Анси логика


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/ansi_logic/103

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." Founder Pavel Durov says tech is meant to set you free That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country.
from kr


Telegram Анси логика
FROM American