Telegram Group & Telegram Channel
ХОЛОДНЫЙ РАСЧЕТ ∅
🦅 Обязательная продажа валюты не впечатлила денежный рынок Ожидания по траектории ключевой ключевой ставке до мая 2024 снизились на в пределах 0.1-0.2пп: пик все еще ~15.5% в апреле, снижение с 2кв24 🧙 Оценка ожидания по ставки из ROISfix @c0ldness
🐍 Вермишельный график ожиданий из свопов ROISfix: Рецепт приготовления

from nelson_siegel_svensson import NelsonSiegelCurve
from nelson_siegel_svensson.calibrate import calibrate_ns_ols
import numpy as np
from datetime import datetime as dt
from datetime import timedelta

df_roisfix = # IMPORT ROISFIX DATA

# FIXED EXCESS RETURN FOR FIXED LEG (ANNUALIZED)
term_prem = 0.028*12

maturities = [1/52,2/52,1/12,2/12,3/12,6/12,1,2]
li_term_prem = [x*term_prem for x in maturities]

df_roisfix_ex_exret = df_roisfix.sub(li_term_prem,axis=1).copy(deep=True)

col_mat = np.linspace(1,180,30)
col_date = df_roisfix_ex_exret_resample.index.to_list()

ix_date = pd.date_range(start=dt(2011,1,1), end=dt(2023,9,13) + timedelta(days=300),freq='D')
df_rates = pd.DataFrame(columns=col_date,index=ix_date)

for ix, row in df_roisfix_ex_exret_resample.iterrows():
try:
vals = row.dropna().values
curve_fit, status = calibrate_ns_ols(np.array( maturities[:len(vals)]),vals)
NSS_Fwd = NelsonSiegelCurve.forward(curve_fit,np.array([x/360 for x in col_mat]))
df_rates.loc[pd.date_range(start=ix+ timedelta(days=6), end=ix + timedelta(days=180),freq='6D'),ix] = NSS_Fwd
# print(ix)
except:
pass

df_rates.tail()
🫡 Спасибо за посещение нашего научного макротелеграм-семинара

@c0ldness
🔥48🫡5



group-telegram.com/c0ldness/2107
Create:
Last Update:

🐍 Вермишельный график ожиданий из свопов ROISfix: Рецепт приготовления

from nelson_siegel_svensson import NelsonSiegelCurve
from nelson_siegel_svensson.calibrate import calibrate_ns_ols
import numpy as np
from datetime import datetime as dt
from datetime import timedelta

df_roisfix = # IMPORT ROISFIX DATA

# FIXED EXCESS RETURN FOR FIXED LEG (ANNUALIZED)
term_prem = 0.028*12

maturities = [1/52,2/52,1/12,2/12,3/12,6/12,1,2]
li_term_prem = [x*term_prem for x in maturities]

df_roisfix_ex_exret = df_roisfix.sub(li_term_prem,axis=1).copy(deep=True)

col_mat = np.linspace(1,180,30)
col_date = df_roisfix_ex_exret_resample.index.to_list()

ix_date = pd.date_range(start=dt(2011,1,1), end=dt(2023,9,13) + timedelta(days=300),freq='D')
df_rates = pd.DataFrame(columns=col_date,index=ix_date)

for ix, row in df_roisfix_ex_exret_resample.iterrows():
try:
vals = row.dropna().values
curve_fit, status = calibrate_ns_ols(np.array( maturities[:len(vals)]),vals)
NSS_Fwd = NelsonSiegelCurve.forward(curve_fit,np.array([x/360 for x in col_mat]))
df_rates.loc[pd.date_range(start=ix+ timedelta(days=6), end=ix + timedelta(days=180),freq='6D'),ix] = NSS_Fwd
# print(ix)
except:
pass

df_rates.tail()
🫡 Спасибо за посещение нашего научного макротелеграм-семинара

@c0ldness

BY ХОЛОДНЫЙ РАСЧЕТ ∅




Share with your friend now:
group-telegram.com/c0ldness/2107

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. Artem Kliuchnikov and his family fled Ukraine just days before the Russian invasion. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.” And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30.
from kr


Telegram ХОЛОДНЫЙ РАСЧЕТ ∅
FROM American