Telegram Group & Telegram Channel
Обзор исследований в AI и индустрии за 2022

Под конец года выходит много разных отчетов по индустриям. В октябре вышел State of AI Report 2022. На слайдах описаны основные события и статьи из мира AI за 2022 год. Плюс таких отчетов, что можно обзорно посмотреть на ситуацию в индустрии в разных срезах, а не читать каждую статью самому. Минус, что фокус твоего внимания полностью в руках авторов.

Про сам отчет.
Во-первых, респект авторам за то, что в начале есть краткий глоссарий с определениями и выжимка презентации.

Во-вторых, 80% всей презентации – это два раздела: research, в котором пересказы статей и industry, в котором приведены разные статистики вроде количества статей (стало больше) или объема инвестиций (стало меньше).

Мое внимание зацепили следующие моменты, которые можно объединить в идею повышения adoption разных AI инструментов. Про диффузионные модели и text2image генерацию картинок писать не буду, итак уже все слышали. Поэтому тут будет про LLM (Large Language Models = Большие Языковые модели)

1. Универсальность подхода языкового моделирования.
Подход, когда взяли трансформер, сформулировали self-supervised задачу (MLM=masked language modelling например) на последовательных данных, часто оказывается sota (лучшим) решением на многих задачах. От предсказания структуры белка до TTS (text2speech).

Почему – это круто? Потому что применяя один подход, можно создать много полезных инструментов. Может, когда-нибудь придем к “one model to rule them all”. Рабочие инструменты, тоже уже есть: Copilot активно использую, когда пишу код, экономит время.

2. Open source аналоги больших разработок. Года два назад я чаще слышал мнение про абсолютную монополию больших компаний в AI. Максимум, что можешь, это подрубаться по api к их продуктам. Однако, Open source сообщество имплементировали (реализовали), клонировали или доработали все основные модели (GPT3, Dalle, AlphaFold) быстрее, чем ожидалось.

Почему – это круто? Потому что open source доступен всем, значит можно строить больше разных инструментов. Ограничивающий фактор – это ресурсы, так как, у Bloom 175B, например, чисто для инференса весА даже в float16 весят 329GB. Но можно запускать распределенно на разных устройствах.

3. Текущие LLM (Large Language Models) недотренированы! OpenAi в 2020-ом сформулировали Scaling Law: если есть бюджет, то размер модели надо увеличивать быстрее, чем размер датасета. DeepMind переформулировали, что рост должен быть с одинаковым темпом. Дальше, думаю, будут работы про повышение качества данных и их подготовку. Не огромные модели проще и дешевле запускать. Опять же упрощает доставку моделей до конечного пользователя в виде инструмента.

Отдельно прикреплю слайд с итогами от самих авторов.



group-telegram.com/c0mmit/37
Create:
Last Update:

Обзор исследований в AI и индустрии за 2022

Под конец года выходит много разных отчетов по индустриям. В октябре вышел State of AI Report 2022. На слайдах описаны основные события и статьи из мира AI за 2022 год. Плюс таких отчетов, что можно обзорно посмотреть на ситуацию в индустрии в разных срезах, а не читать каждую статью самому. Минус, что фокус твоего внимания полностью в руках авторов.

Про сам отчет.
Во-первых, респект авторам за то, что в начале есть краткий глоссарий с определениями и выжимка презентации.

Во-вторых, 80% всей презентации – это два раздела: research, в котором пересказы статей и industry, в котором приведены разные статистики вроде количества статей (стало больше) или объема инвестиций (стало меньше).

Мое внимание зацепили следующие моменты, которые можно объединить в идею повышения adoption разных AI инструментов. Про диффузионные модели и text2image генерацию картинок писать не буду, итак уже все слышали. Поэтому тут будет про LLM (Large Language Models = Большие Языковые модели)

1. Универсальность подхода языкового моделирования.
Подход, когда взяли трансформер, сформулировали self-supervised задачу (MLM=masked language modelling например) на последовательных данных, часто оказывается sota (лучшим) решением на многих задачах. От предсказания структуры белка до TTS (text2speech).

Почему – это круто? Потому что применяя один подход, можно создать много полезных инструментов. Может, когда-нибудь придем к “one model to rule them all”. Рабочие инструменты, тоже уже есть: Copilot активно использую, когда пишу код, экономит время.

2. Open source аналоги больших разработок. Года два назад я чаще слышал мнение про абсолютную монополию больших компаний в AI. Максимум, что можешь, это подрубаться по api к их продуктам. Однако, Open source сообщество имплементировали (реализовали), клонировали или доработали все основные модели (GPT3, Dalle, AlphaFold) быстрее, чем ожидалось.

Почему – это круто? Потому что open source доступен всем, значит можно строить больше разных инструментов. Ограничивающий фактор – это ресурсы, так как, у Bloom 175B, например, чисто для инференса весА даже в float16 весят 329GB. Но можно запускать распределенно на разных устройствах.

3. Текущие LLM (Large Language Models) недотренированы! OpenAi в 2020-ом сформулировали Scaling Law: если есть бюджет, то размер модели надо увеличивать быстрее, чем размер датасета. DeepMind переформулировали, что рост должен быть с одинаковым темпом. Дальше, думаю, будут работы про повышение качества данных и их подготовку. Не огромные модели проще и дешевле запускать. Опять же упрощает доставку моделей до конечного пользователя в виде инструмента.

Отдельно прикреплю слайд с итогами от самих авторов.

BY commit history


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/c0mmit/37

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.”
from kr


Telegram commit history
FROM American