Telegram Group & Telegram Channel
Непрерывное математическое образование
https://ium.mccme.ru/globus.html в четверг 17 октября на семинаре «Глобус» Юрий Прохров будет рассказывать про проблемы рациональности в алгебраической геометрии «Многообразие рационально, если оно допускает параметризацию рациональными функциями “почти…
https://ium.mccme.ru/globus.html

в четверг 7 ноября на семинаре «Глобус» Ольга Починка будет рассказывать о топологической ветке нижегородской школы нелинейных колебаний академика А.А.Андронова

15:40, конференц-зал НМУ

«Наиболее интенсивная и плодотворная деятельность А.А.Андронова как учёного, педагога и организатора развернулась в городе Горьком (ныне Нижний Новгород), куда он в 1931 году вместе с группой талантливых молодых учёных (М.Т.Грехова, В.И.Гапонов, Е.А.Леонтович, А.Г.Любина) переехал на постоянное местожительство. Здесь (вместе с учениками и коллегами) он ввел и детально разработал понятие «грубая система» — система, устойчивая к небольшим изменениям параметров. Полученный А.А.Андроновым и Л.С.Понтрягиным критерий грубости системы дифференциальных уравнений на плоскости по праву считается предвестником “гиперболической революции”, произошедшей в теории динамических систем в 60-х годах 20 века. (…) Аналоги грубых потоков на плоскости, (…) получившие название систем Морса-Смейла, оказались лишь частью многогранного гиперболического мира — это структурно устойчивые системы с конечным числом периодических точек. Как оказалось, титул "простейшие структурно устойчивые системы" совсем не отражает сути происходящего в мире систем Морса-Смейла. На сегодняшний день (благодаря серии работ нижегородско-французского коллектива: Х.Бонатти, В.З.Гринес, Е.Я.Гуревич, Е.В.Жужома, Ф.Лауденбах, В.С.Медведев, О.В.Починка) трудно указать какой-либо топологический эффект, не проявившийся в качестве инварианта такой динамической системы. (…) В начале доклада будет дан краткий обзор истории Горьковской-Нижегородской математической школы и ее вклада в теорию бифуркаций и динамических систем.»



group-telegram.com/cme_channel/3996
Create:
Last Update:

https://ium.mccme.ru/globus.html

в четверг 7 ноября на семинаре «Глобус» Ольга Починка будет рассказывать о топологической ветке нижегородской школы нелинейных колебаний академика А.А.Андронова

15:40, конференц-зал НМУ

«Наиболее интенсивная и плодотворная деятельность А.А.Андронова как учёного, педагога и организатора развернулась в городе Горьком (ныне Нижний Новгород), куда он в 1931 году вместе с группой талантливых молодых учёных (М.Т.Грехова, В.И.Гапонов, Е.А.Леонтович, А.Г.Любина) переехал на постоянное местожительство. Здесь (вместе с учениками и коллегами) он ввел и детально разработал понятие «грубая система» — система, устойчивая к небольшим изменениям параметров. Полученный А.А.Андроновым и Л.С.Понтрягиным критерий грубости системы дифференциальных уравнений на плоскости по праву считается предвестником “гиперболической революции”, произошедшей в теории динамических систем в 60-х годах 20 века. (…) Аналоги грубых потоков на плоскости, (…) получившие название систем Морса-Смейла, оказались лишь частью многогранного гиперболического мира — это структурно устойчивые системы с конечным числом периодических точек. Как оказалось, титул "простейшие структурно устойчивые системы" совсем не отражает сути происходящего в мире систем Морса-Смейла. На сегодняшний день (благодаря серии работ нижегородско-французского коллектива: Х.Бонатти, В.З.Гринес, Е.Я.Гуревич, Е.В.Жужома, Ф.Лауденбах, В.С.Медведев, О.В.Починка) трудно указать какой-либо топологический эффект, не проявившийся в качестве инварианта такой динамической системы. (…) В начале доклада будет дан краткий обзор истории Горьковской-Нижегородской математической школы и ее вклада в теорию бифуркаций и динамических систем.»

BY Непрерывное математическое образование


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/cme_channel/3996

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Founder Pavel Durov says tech is meant to set you free "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.” Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment. The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform.
from kr


Telegram Непрерывное математическое образование
FROM American