Telegram Group Search
ранняя версия Grok-3 (кодовое имя «шоколад») теперь №1 на Арене! 🏆

Грок-3 — это:
- Первая в мире модель, преодолевшая отметку в 1400 очков!
- №1 по всем категориям, достижение, которого становится все труднее достичь
RSHB DA Meetup: Качество данных и Data Vault 2.0 в действии
Митап от РСХБ.цифра для дата-аналитиков и инженеров данных

Приглашаем всех, кто занимается большими данными и следит за их качеством. Вас ждут доклады от руководителей дата-направлений.

🌐 Онлайн и офлайн в Москве
📆 27 февраля в 18:00 (МСК, GMT+3)
👥 Дискуссии для участников, афтерпати в офлайне
Мерч и призы за вопросы

Программа:

🗣 Леонид Калядин (МТS Digital) — «Data Quality в условиях Self-Service: как мы избежали хаоса и создали систему проверок для коммунальных витрин»
🗣 Алексей Кошевой и Кристина Проскурина (РСХБ-Интех) — «Как мы сделали одну большую песочницу для всех аналитиков»
🗣 Денис Лукьянов (Ecom․tech) — «Data Vault 2.0. Методология, логическая модель, построение витрин»

Участвуйте в дискуссиях и задавайте вопросы спикерам — лично или в Telegram-чате. Организаторы подготовили мерч для офлайн-участников и призы для авторов лучших вопросов.

Регистрируйтесь на сайте

Реклама. Фонд «Сколково». ИНН 7701058410
🔥 CHRONOS — это инновационный подход к созданию хронологических сводок новостей, разработанный командой Alibaba-NLP!

💡 Он основан на итеративной генерации вопросов о теме и полученных документах для формирования последовательных хронологических резюме. В рамках проекта создан актуальный датасет для открытой хронологической сводки новостей, превосходящий существующие публичные наборы данных по размеру и продолжительности временных линий. Эксперименты показали, что метод CHRONOS эффективен в задачах открытой хронологической сводки и достигает сопоставимых результатов с передовыми методами в закрытых доменах, при этом значительно улучшая эффективность и масштабируемость.

🖥 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
📚 "Painful intelligence: What AI can tell us about human suffering

Эта бесплатная книга — путеводитель по миру машинного обучения!

Основное, что в ней рассматривается:
• Базовые концепции: Алгоритмы, математические основы и принципы построения моделей.
• Глубокое обучение: Нейронные сети, методы оптимизации и регуляризация для повышения качества моделей.
• Практические кейсы: Реальные примеры применения ML в различных отраслях, от анализа данных до прогнозирования.
• Современные методики: Настройка гиперпараметров, интерпретация результатов и стратегии улучшения производительности.

Для специалиста по машинному обучению эта книга станет полезным ресурсом, помогая углубить знания, найти новые подходы и повысить эффективность проектов.

📚 Книга

@data_analysis_ml


#freebook #book #ai #ml #machinelearning #opensource
Хотите научиться решать одну из популярных задач ML-инженера?

Кредитный скоринг, или возможность определять, сможет ли человек вовремя вернуть кредит – одна из задач, с которой часто сталкиваются в работе.

Приходите на бесплатный вебинар, где Савелий Батурин, Senior ML-Engineer в Postgres Professional и преподаватель курса по ML школы Simulative в прямом эфире покажет как построить модель кредитного скоринга на Kaggle.

Что будем делать на вебинаре:
🟠Вникнем в задачу классификации и кредитного скоринга
🟠Разберем имеющийся датасет
🟠Построим пайплайны обработки числовых и категориальных признаков
🟠Обучим и подберем параметры ML модели-классификатора
🟠Проведем расчет и анализ метрик на основе результатов работы модели

🕗Встречаемся 19 февраля 19:00 по мск

Вебинар будет интересен как новичкам, так и уже опытным специалистам

Зарегистрироваться на бесплатный вебинар
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ Сudacodes от Maharshi-Pandya — это сборник примеров и демо-проектов для работы с NVIDIA CUDA, который будет полезен разработчикам, интересующимся параллельным программированием и ускорением вычислений на GPU.

Что внутри и как работает:
• Практические примеры: Код демонстрирует различные техники работы с CUDA, начиная с базовых примеров и заканчивая более сложными алгоритмами для параллельных вычислений.
• Реализация на CUDA: Примеры написаны с использованием C/C++ и CUDA-расширений, что позволяет увидеть, как правильно организовывать код для выполнения задач на GPU.
• Инструкции по сборке: В репозитории, как правило, присутствуют инструкции по компиляции с помощью NVCC и запуску примеров, что упрощает изучение и практическое применение технологий.

Чем полезен для специалистов:
• Это отличный ресурс для изучения принципов работы GPU и оптимизации вычислительных задач.
• Примеры помогут разобраться в особенностях параллельного программирования и эффективного использования вычислительных ресурсов NVIDIA.
• Подходит как для новичков, так и для опытных разработчиков, желающих улучшить навыки в области высокопроизводительных вычислений.

Репозиторий станет незаменимым помощником для тех, кто хочет погрузиться в мир CUDA и освоить передовые методы ускорения вычислений на графических процессорах.

git clone https://github.com/Maharshi-Pandya/cudacodes.git

Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
✔️ Native Sparse Attention - революция в механизмах внимания от Deepseek.

NSA (Natively Sparse Attention) — новый механизм внимания, предложенный на заменуFull Attention, который значительно ускоряет обработку длинных последовательностей текста без потери качества модели.
NSA использует динамическую иерархическую стратегию, которая сочетает сжатие токенов на грубом уровне с точным отбором ключевых токенов. Это позволяет сохранить глобальное понимание контекста и локальную точность. NSA поддерживает сквозное обучение, совместим с GQA и MQA, что делает его пригодным не только для инференса, но и для обучения.
Модели, обученные с использованием NSA показали 9х ускорение при прямом распространении и 6х при обратном для последовательностей длиной 64к токенов относительно Full Attention. В декодировании - 11х.

arxiv.org

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Бесплатно приехать в топовый вуз, поучиться у IT-экспертов и познакомиться с единомышленниками — звучит как мечта? Тогда вам стоит подать заявку на весенний студкемп Яндекс Образования в ФПМИ МФТИ. Он пройдёт с 14 по 26 апреля и будет посвящён робототехнике и генеративному ИИ.

В программе — лекции от экспертов, воркшопы, работа над проектами и вдохновляющая атмосфера. Студенты выпускного курса смогут поступить в магистратуру ФПМИ МФТИ, сдав на студкемпе вступительный экзамен. Участие, как и всегда, бесплатное. Каждому, кто пройдёт отбор, оплатят проезд и проживание. Успейте зарегистрироваться до 23 февраля.
🔥 CAG (Cache-Augmented Generation) — подход для улучшения генерации текста большими языковыми моделями без необходимости в реальном времени извлекать внешние данные, как в Retrieval-Augmented Generation (RAG)! Вместо этого CAG использует предварительную загрузку всех необходимых данных в контекст модели, а также кеширование параметров для ускорения генерации и снижения сложности системы.

🌟 Преимущества CAG включают снижение задержек (за счет отказа от этапа извлечения), повышение надежности (минимизация ошибок извлечения) и упрощение архитектуры. Ограничения подхода связаны с длиной контекстного окна LLM и ограничениями по объему данных, которые могут быть загружены.

🔐 Лицензия: MIT

🖥 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
📊 Arena Trend август 2024 г. - февраль 2025 г

После нескольких падений и взлетов
Deepseek ai в прошлом месяце,
XAI вырывается вперед на вершину таблицы лидеров.

Гонка ИИ продолжается! 📈
2025/02/21 00:05:42
Back to Top
HTML Embed Code: