Telegram Group & Telegram Channel
Наброс-вопрос про DS в “продуктовых компаниях”.
Буду осознанно сгущать краски, представим что мир черно-белый

Никогда не понимал вот это вот “продуктовая компания”, “все является продуктом” (реально скрам уже в бухгалтерию внедрили) и как в этом всем должен работать и развиваться DS, строить карьеру, расти в ML. Это же анекдот – знания DS получают на каггле, при подготовке к собеседованиям и на халтурках (когда сам с нуля за мелкий прайс).
Вообще кстати на фразу “относись к продукту как к своему бизнесу” реагирую просто – participation in success есть? Нет? Ну тогда уже бегу, ага. Но сейчас все же про DS

Особенно часто DS работает где-нибудь в change, по условному scrum – там где много унижений и микроменеджмента (чего только ежедневные стендапы стоят – привет, столыпинский вагон; только представьте чтобы совет директоров или правление стоя совещалось – и почасовые оценки задач грумингом), а на выходе минимум 20% времени команды уходит на всякие “церемонии”, фасилитаторов и на переключение между встречами. Хотя и без меня на эту тему написано прилично

И вот бесконечный бег, который поделен на “спринты” и “супер-спринты” – фичу за фичей. А чтобы получить промоушен надо решить технически сложную задачу!
Погодите, а разве развитие продукта не про максимально эффективные решения? Типа вместо двух моделей сделаем одну, вместо модели сделаем бизнес-правило и пр. – если метрики на A/B почти одинаковые? Не каждое стат. значимое изменение метрики приводит к росту прибыли – и вроде как задача продакта вести хозяйство разумно. А что если в продукте нет сложных ML-задач? То есть ты делаешь все супер, но задачи “недостаточно сложные” чтобы тебя повысить?

И другой поинт – если ты живешь спринтами и задачами по 4 часа что ты там сложное решишь?

Явно такие мысли не только у меня – от мотивированных именно на ML стажеров и кандидатов частый запрос – а можно куда-нибудь в RnD? И не то чтобы эти ребята мечтают о карьере академиков и писать статьи, им просто не в кайф быть крысой в колесе.

И их можно понять.
Особенно когда они выгорают, а им предлагают максимум “ротацию” в аналогичного уровня сложности продукт – то есть шило на мыло. (Хотя инструмент ротации я очень люблю – он позволяет создавать конкуренцию между продактами за DS и работает на повышение окладов)

Где-то слышал (мб вранье) что скрам придумали для бадишопов – чтобы клиенты получали иллюзию максимального контроля за своими деньгами.

Еще стоит подумать что бывает когда продукт закрывают как неперспективный. Увольняться из компании? А если компания нравится?

Итак, что делать если ты в продуктовой компании, хочешь расти по карьере, но в ML а не в продакта? (а случаи когда DS был вынужден перейти в PO у меня перед глазами)

Свой ответ напишу в сл посте

Если кто знает правильный ответ -- велкам в каменты



group-telegram.com/datarascals/131
Create:
Last Update:

Наброс-вопрос про DS в “продуктовых компаниях”.
Буду осознанно сгущать краски, представим что мир черно-белый

Никогда не понимал вот это вот “продуктовая компания”, “все является продуктом” (реально скрам уже в бухгалтерию внедрили) и как в этом всем должен работать и развиваться DS, строить карьеру, расти в ML. Это же анекдот – знания DS получают на каггле, при подготовке к собеседованиям и на халтурках (когда сам с нуля за мелкий прайс).
Вообще кстати на фразу “относись к продукту как к своему бизнесу” реагирую просто – participation in success есть? Нет? Ну тогда уже бегу, ага. Но сейчас все же про DS

Особенно часто DS работает где-нибудь в change, по условному scrum – там где много унижений и микроменеджмента (чего только ежедневные стендапы стоят – привет, столыпинский вагон; только представьте чтобы совет директоров или правление стоя совещалось – и почасовые оценки задач грумингом), а на выходе минимум 20% времени команды уходит на всякие “церемонии”, фасилитаторов и на переключение между встречами. Хотя и без меня на эту тему написано прилично

И вот бесконечный бег, который поделен на “спринты” и “супер-спринты” – фичу за фичей. А чтобы получить промоушен надо решить технически сложную задачу!
Погодите, а разве развитие продукта не про максимально эффективные решения? Типа вместо двух моделей сделаем одну, вместо модели сделаем бизнес-правило и пр. – если метрики на A/B почти одинаковые? Не каждое стат. значимое изменение метрики приводит к росту прибыли – и вроде как задача продакта вести хозяйство разумно. А что если в продукте нет сложных ML-задач? То есть ты делаешь все супер, но задачи “недостаточно сложные” чтобы тебя повысить?

И другой поинт – если ты живешь спринтами и задачами по 4 часа что ты там сложное решишь?

Явно такие мысли не только у меня – от мотивированных именно на ML стажеров и кандидатов частый запрос – а можно куда-нибудь в RnD? И не то чтобы эти ребята мечтают о карьере академиков и писать статьи, им просто не в кайф быть крысой в колесе.

И их можно понять.
Особенно когда они выгорают, а им предлагают максимум “ротацию” в аналогичного уровня сложности продукт – то есть шило на мыло. (Хотя инструмент ротации я очень люблю – он позволяет создавать конкуренцию между продактами за DS и работает на повышение окладов)

Где-то слышал (мб вранье) что скрам придумали для бадишопов – чтобы клиенты получали иллюзию максимального контроля за своими деньгами.

Еще стоит подумать что бывает когда продукт закрывают как неперспективный. Увольняться из компании? А если компания нравится?

Итак, что делать если ты в продуктовой компании, хочешь расти по карьере, но в ML а не в продакта? (а случаи когда DS был вынужден перейти в PO у меня перед глазами)

Свой ответ напишу в сл посте

Если кто знает правильный ответ -- велкам в каменты

BY Дата канальи — про «специалистов» в данных / ML / AI




Share with your friend now:
group-telegram.com/datarascals/131

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Official government accounts have also spread fake fact checks. An official Twitter account for the Russia diplomatic mission in Geneva shared a fake debunking video claiming without evidence that "Western and Ukrainian media are creating thousands of fake news on Russia every day." The video, which has amassed almost 30,000 views, offered a "how-to" spot misinformation. The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content.
from kr


Telegram Дата канальи — про «специалистов» в данных / ML / AI
FROM American