Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/dlinnlp/-1744-1745-1746-): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
DL in NLP | Telegram Webview: dlinnlp/1744 -
Telegram Group & Telegram Channel
Early Weight Averaging meets High Learning Rates for LLM Pre-training
Sanyal et al., [UT Austin]
arxiv.org/abs/2306.03241

Исследования того а что будет если мы просто усредним несколько моделей всегда были слегка безумной, но очень эффективной идеей улучшения качества моделей. В этой статье авторы показывают что это можно делать не только с финальными чекпоинтами, но и во время тренировки.

Авторы предлагают алгоритм LAWA (LAtest Weight Averaging) который выглядит так:
1. В начале тренируемся как обычно, сохраняем чекпоинты модели каждые N~1000 итераций
2. Когда мы достигаем update_step % N == 0, берём последние M~10 чекпоинтов и усредняем их, заменяем веса модели
3. Продолжаем тренироваться

Метод очень похож на EMA, но тут мы выполняем его не только для тестирования модели, но и для тренировки.

Интересные моменты: оптимальный lr для LAWA заметно выше чем оптимальный lr для обычной тренировки, а также LAWA позволяет избежать нестабильностей лосса когда он внезапно взрывается 🔥

В конце хотелось бы ещё сказать про подробности экспериментов. Порог входа в рисёч предтренировки это ~8xA100. Но есть альтернатива: Pythia и LLM360 зарелизили не только финальный чекпоинт, но и чекпоинты каждую 1000 итераций, а также порядок данных. Это означает что вы можете "вклиниться" со своим методом в середину тренировки и проверить как он работает в начале/середине/конце обучения. Это относительно дешево и так и были проведены большинство экспериментов.



group-telegram.com/dlinnlp/1744
Create:
Last Update:

Early Weight Averaging meets High Learning Rates for LLM Pre-training
Sanyal et al., [UT Austin]
arxiv.org/abs/2306.03241

Исследования того а что будет если мы просто усредним несколько моделей всегда были слегка безумной, но очень эффективной идеей улучшения качества моделей. В этой статье авторы показывают что это можно делать не только с финальными чекпоинтами, но и во время тренировки.

Авторы предлагают алгоритм LAWA (LAtest Weight Averaging) который выглядит так:
1. В начале тренируемся как обычно, сохраняем чекпоинты модели каждые N~1000 итераций
2. Когда мы достигаем update_step % N == 0, берём последние M~10 чекпоинтов и усредняем их, заменяем веса модели
3. Продолжаем тренироваться

Метод очень похож на EMA, но тут мы выполняем его не только для тестирования модели, но и для тренировки.

Интересные моменты: оптимальный lr для LAWA заметно выше чем оптимальный lr для обычной тренировки, а также LAWA позволяет избежать нестабильностей лосса когда он внезапно взрывается 🔥

В конце хотелось бы ещё сказать про подробности экспериментов. Порог входа в рисёч предтренировки это ~8xA100. Но есть альтернатива: Pythia и LLM360 зарелизили не только финальный чекпоинт, но и чекпоинты каждую 1000 итераций, а также порядок данных. Это означает что вы можете "вклиниться" со своим методом в середину тренировки и проверить как он работает в начале/середине/конце обучения. Это относительно дешево и так и были проведены большинство экспериментов.

BY DL in NLP






Share with your friend now:
group-telegram.com/dlinnlp/1744

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Soloviev also promoted the channel in a post he shared on his own Telegram, which has 580,000 followers. The post recommended his viewers subscribe to "War on Fakes" in a time of fake news. "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. Emerson Brooking, a disinformation expert at the Atlantic Council's Digital Forensic Research Lab, said: "Back in the Wild West period of content moderation, like 2014 or 2015, maybe they could have gotten away with it, but it stands in marked contrast with how other companies run themselves today." Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred." These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise.
from kr


Telegram DL in NLP
FROM American