Telegram Group & Telegram Channel
InstantStyle-Plus: Style Transfer with Content-Preserving in Text-to-Image Generation #style_transfer #paper

Статья (июнь 2024) про стилизацию картинок в задачах image-to-image. Вторая статья в серии статей (InstantStyle, InstantStyle-Plus, CSGO) от этих же авторов. На вход принимается картинка стиля (образец) и исходная картинка объекта, который хотим менять. На выход выдается сгенерированная картинка, в которой исходный объект перерисован в другом стиле.

В статье много раз отмечается, что основной фокус сделан на сохранении исходного объекта, чтобы вносить в него как можно меньше искажений при изменении стиля. Cистема построена на основе SDXL, fine-tuning не требуется, вся работа — в режиме инференса.

Обуславливание выполняется одновременно за счет нескольких механизмов:

для контента:
- картинка объекта переводится в латентное пространство и там делается инверсия в зашумленное состояние (используется модель ReNoise). С этого нового начального состояния начинается процесс денойзинга.
- картинка объекта проходит через Tile ControlNet (особый вид ControlNet, изначально предназначен для upscaling, предобучен на больших картинках, составленных из повторяющихся маленьких картинок) и подается на каждом шаге денойзинга через cross-attention.
- картинка объекта проходит через Image Adapter (IP-Adapter) и тоже подается на каждом шаге денойзинга через cross-attention.

для стиля:
- картинка стиля проходит через Style Adapter (IP-Adapter) и подается на каждом шаге денойзинга через cross-attention (в соответствии с рекомендациями InstantStyle — только в один конкретный блок U-net).
- на каждом шаге результат сравнивается с картинкой стиля через CLIP Style Similarity, и эта разность используется в качестве guidance на следующих шагах денойзинга.

🔥Project Page
💻Github
📜Paper

@gentech_lab
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/gentech_lab/71
Create:
Last Update:

InstantStyle-Plus: Style Transfer with Content-Preserving in Text-to-Image Generation #style_transfer #paper

Статья (июнь 2024) про стилизацию картинок в задачах image-to-image. Вторая статья в серии статей (InstantStyle, InstantStyle-Plus, CSGO) от этих же авторов. На вход принимается картинка стиля (образец) и исходная картинка объекта, который хотим менять. На выход выдается сгенерированная картинка, в которой исходный объект перерисован в другом стиле.

В статье много раз отмечается, что основной фокус сделан на сохранении исходного объекта, чтобы вносить в него как можно меньше искажений при изменении стиля. Cистема построена на основе SDXL, fine-tuning не требуется, вся работа — в режиме инференса.

Обуславливание выполняется одновременно за счет нескольких механизмов:

для контента:
- картинка объекта переводится в латентное пространство и там делается инверсия в зашумленное состояние (используется модель ReNoise). С этого нового начального состояния начинается процесс денойзинга.
- картинка объекта проходит через Tile ControlNet (особый вид ControlNet, изначально предназначен для upscaling, предобучен на больших картинках, составленных из повторяющихся маленьких картинок) и подается на каждом шаге денойзинга через cross-attention.
- картинка объекта проходит через Image Adapter (IP-Adapter) и тоже подается на каждом шаге денойзинга через cross-attention.

для стиля:
- картинка стиля проходит через Style Adapter (IP-Adapter) и подается на каждом шаге денойзинга через cross-attention (в соответствии с рекомендациями InstantStyle — только в один конкретный блок U-net).
- на каждом шаге результат сравнивается с картинкой стиля через CLIP Style Similarity, и эта разность используется в качестве guidance на следующих шагах денойзинга.

🔥Project Page
💻Github
📜Paper

@gentech_lab

BY Gentech Lab






Share with your friend now:
group-telegram.com/gentech_lab/71

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors. "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender.
from kr


Telegram Gentech Lab
FROM American