Telegram Group & Telegram Channel
[AI21] Jamba-1.5: Hybrid Transformer-Mamba Models at Scale
AI21 Labs Jamba Team
Статья: https://arxiv.org/abs/2408.12570
Пост: https://www.ai21.com/blog/announcing-jamba-model-family
Модели: https://huggingface.co/collections/ai21labs/jamba-15-66c44befa474a917fcf55251

Малозамеченным прошёл релиз моделей Jamba-1.5, отскейленных версий мартовской Jamba (https://www.group-telegram.com/kr/gonzo_ML.com/2492).

Напомним, что Jamba — это гибрид SSM (https://www.group-telegram.com/kr/gonzo_ML.com/1424) и трансформера, точнее Mamba (https://www.group-telegram.com/kr/gonzo_ML.com/2148) + MoE (Mixture-of-Experts, про это мы писали много, можно начать отсюда https://www.group-telegram.com/kr/gonzo_ML.com/472) + трансформерные слои.

В оригинале блок Jamba состоял из 8 слоёв, из них каждый второй MoE, всего четыре штуки; три слоя Mamba, и один трансформерный. Малое количество трансформерных слоёв позволяло уменьшить размер KV-кеша (получается в 8 раз меньше обычного трансформера с таким же количеством слоёв).

Оригинальная Jamba содержала 52B параметров, из которых активны в каждый момент были 12B (потому что MoE).

Благодаря более скромному memory footprint, модель позволяла использовать контекст размером 140k на одном GPU A100-80 Gb, намного больше, чем влезало у Llama-2 70B или Mixtral 8x7B. Полный размер контекста модели был 256k токенов. Это также позволяло использовать более крупные батчи, так что итоговый throughput начиная с размера батча 4 был выше упомянутых конкурентов.

По качеству оригинальная Jamba показала себя достойно в сравнении с Llama-2 13B-70B, Gemma 7B и Mixtral.

Это была базовая модель, никакого alignment или instruction tuning. Доступна под Apache 2.0

Теперь в августе вышло обновление, Jamba-1.5, включающая две модели:
* Jamba-1.5-Mini: 12B/52B active/total params (как оригинальная Jamba)
* Jamba-1.5-Large: 94B/398B active/total params

Пробовали блоки Mamba-2 (https://www.group-telegram.com/kr/gonzo_ML.com/2718), но они оказались не лучше и в архитектуре оставили Mamba-1.

Для эффективного инференса разработали новую квантизацию ExpertsInt8, когда веса MoE и MLP квантуются в INT8, а перед вычислением приводятся к BF16, чтобы использовать быстрые BF16 кернелы. Это всё происходит внутри vLLM в fused_moe кернеле. На H100 latency ExpertsInt8 соответствует FP8, а на A100, где нет FP8, намного превосходит GPTQ.

В обучение добавили Activation Loss, так как некоторые активации вырастали до 4e6, что вроде ничему не мешало, но на всякий случай.

Throughput и latency у Jamba хороши по сравнению с конкурентами (Llama 3.1 8B, Mixtral-8x7B, Mistral Nemo 12B для Mini; Llama 3.1 70B, Mistral Large 2, Llama 3.1 405B для Large), особенно на большом размере контекста.

Обучалось на каком-то внутреннем датасете в три фазы. В pre-train по сравнению с предыдущей Jamba добавили мультиязычные данные с фокусом на English, Spanish, French, Portueguse, Italian, Dutch, German, Arabic, Hebrew. Затем был mid-training с фокусом на длинных документах. Затем post-training с SFT на качественных разговорных данных, скилл-специфичных и с длинным контекстом. Как я понял, отдельного preference tuning типа PPO/DPO не было, обошлись качественной синтетикой, фильтрацией и SFT.

Модель обучена с function calling. Я рад, что эта тема (https://www.group-telegram.com/kr/gonzo_ML.com/2821) развивается.

Итоговые модели сравнимы с соразмерными конкурентами из линеек Llama-3.1, Gemma-2, Mistral-Large-2.

Отдельно проверили способности на задачах с большим контекстом через бенчмарк RULER (https://arxiv.org/abs/2404.06654) с 8 вариантами needle-in-a-haystack задач. Заявляют, что они единственные, кто поддерживает эффективный контекст в 256k, остальные хоть и заявляют большие длины, но лажают. На ∞BENCH тоже хороши.

Короче, выглядит хорошо. Кажется, это первая реально большая нетрансформерная (ну почти) модель. Лицензия у новой модели правда изменилась с Apache 2.0 на Jamba Open Model License, которая personal, revocable, и не разрешает коммерческое использование, если вы зарабатываете больше $50M в год (problems nice to have).



group-telegram.com/gonzo_ML/2903
Create:
Last Update:

[AI21] Jamba-1.5: Hybrid Transformer-Mamba Models at Scale
AI21 Labs Jamba Team
Статья: https://arxiv.org/abs/2408.12570
Пост: https://www.ai21.com/blog/announcing-jamba-model-family
Модели: https://huggingface.co/collections/ai21labs/jamba-15-66c44befa474a917fcf55251

Малозамеченным прошёл релиз моделей Jamba-1.5, отскейленных версий мартовской Jamba (https://www.group-telegram.com/kr/gonzo_ML.com/2492).

Напомним, что Jamba — это гибрид SSM (https://www.group-telegram.com/kr/gonzo_ML.com/1424) и трансформера, точнее Mamba (https://www.group-telegram.com/kr/gonzo_ML.com/2148) + MoE (Mixture-of-Experts, про это мы писали много, можно начать отсюда https://www.group-telegram.com/kr/gonzo_ML.com/472) + трансформерные слои.

В оригинале блок Jamba состоял из 8 слоёв, из них каждый второй MoE, всего четыре штуки; три слоя Mamba, и один трансформерный. Малое количество трансформерных слоёв позволяло уменьшить размер KV-кеша (получается в 8 раз меньше обычного трансформера с таким же количеством слоёв).

Оригинальная Jamba содержала 52B параметров, из которых активны в каждый момент были 12B (потому что MoE).

Благодаря более скромному memory footprint, модель позволяла использовать контекст размером 140k на одном GPU A100-80 Gb, намного больше, чем влезало у Llama-2 70B или Mixtral 8x7B. Полный размер контекста модели был 256k токенов. Это также позволяло использовать более крупные батчи, так что итоговый throughput начиная с размера батча 4 был выше упомянутых конкурентов.

По качеству оригинальная Jamba показала себя достойно в сравнении с Llama-2 13B-70B, Gemma 7B и Mixtral.

Это была базовая модель, никакого alignment или instruction tuning. Доступна под Apache 2.0

Теперь в августе вышло обновление, Jamba-1.5, включающая две модели:
* Jamba-1.5-Mini: 12B/52B active/total params (как оригинальная Jamba)
* Jamba-1.5-Large: 94B/398B active/total params

Пробовали блоки Mamba-2 (https://www.group-telegram.com/kr/gonzo_ML.com/2718), но они оказались не лучше и в архитектуре оставили Mamba-1.

Для эффективного инференса разработали новую квантизацию ExpertsInt8, когда веса MoE и MLP квантуются в INT8, а перед вычислением приводятся к BF16, чтобы использовать быстрые BF16 кернелы. Это всё происходит внутри vLLM в fused_moe кернеле. На H100 latency ExpertsInt8 соответствует FP8, а на A100, где нет FP8, намного превосходит GPTQ.

В обучение добавили Activation Loss, так как некоторые активации вырастали до 4e6, что вроде ничему не мешало, но на всякий случай.

Throughput и latency у Jamba хороши по сравнению с конкурентами (Llama 3.1 8B, Mixtral-8x7B, Mistral Nemo 12B для Mini; Llama 3.1 70B, Mistral Large 2, Llama 3.1 405B для Large), особенно на большом размере контекста.

Обучалось на каком-то внутреннем датасете в три фазы. В pre-train по сравнению с предыдущей Jamba добавили мультиязычные данные с фокусом на English, Spanish, French, Portueguse, Italian, Dutch, German, Arabic, Hebrew. Затем был mid-training с фокусом на длинных документах. Затем post-training с SFT на качественных разговорных данных, скилл-специфичных и с длинным контекстом. Как я понял, отдельного preference tuning типа PPO/DPO не было, обошлись качественной синтетикой, фильтрацией и SFT.

Модель обучена с function calling. Я рад, что эта тема (https://www.group-telegram.com/kr/gonzo_ML.com/2821) развивается.

Итоговые модели сравнимы с соразмерными конкурентами из линеек Llama-3.1, Gemma-2, Mistral-Large-2.

Отдельно проверили способности на задачах с большим контекстом через бенчмарк RULER (https://arxiv.org/abs/2404.06654) с 8 вариантами needle-in-a-haystack задач. Заявляют, что они единственные, кто поддерживает эффективный контекст в 256k, остальные хоть и заявляют большие длины, но лажают. На ∞BENCH тоже хороши.

Короче, выглядит хорошо. Кажется, это первая реально большая нетрансформерная (ну почти) модель. Лицензия у новой модели правда изменилась с Apache 2.0 на Jamba Open Model License, которая personal, revocable, и не разрешает коммерческое использование, если вы зарабатываете больше $50M в год (problems nice to have).

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/2903

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

He adds: "Telegram has become my primary news source." For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries. Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe. Telegram Messenger Blocks Navalny Bot During Russian Election
from kr


Telegram gonzo-обзоры ML статей
FROM American