group-telegram.com/gonzo_ML/3294
Last Update:
Предсказание токенов сделано последовательным. Для предсказания D дополнительных токенов используется D MTP модулей (MTP Modules), у них шареные эмбеддинги и выходная голова. На вход им прилетает выход слоя основной модели или предыдущего MTP модуля, а также эмбеддинги следующего токена, всё нормализуется RMSNorm и конкатенируется. Каждый модуль считает кроссэнтропийный лосс, по всем модулям вычисляется средний лосс и он с коэффициентом 𝜆 выступает как дополнительный лосс модели (0.3 для первых 10T токенов, 0.1 для последующих 4.8T). При инференсе MTP модули отбрасываются, но можно и использовать для speculative decoding.
MTP стабильно улучшает перформанс на большинстве бенчмарков. В экспериментах acceptance rate для следующего токена находился в диапазоне от 85% до 90%. В комбинации со speculative decoding TPS возрастает в 1.8 раза.
❇️ Другая интересная часть — инфраструктура.
DeepSeek-V3 обучался на кластере из 2048 NVIDIA H800 GPU. Напомню, что H800 — это урезанная H100 для Китайского рынка. У H800 ослаблен interconnect (bandwidth ниже более чем в два раза и количество линков NVLink тоже уменьшено), а также в десятки раз понижены флопсы для FP64 — для нейросетей неважно, а атомные бомбы считать хуже. Чтобы нумерация была “особенно логичной”, H200 — это улучшенная версия H100 с большим объёмом более быстрой памяти.
Для обучения внутри компании написали свой закрытый фреймворк HAI-LLM.
DeepSeek-V3 использует 16-way Pipeline Parallelism (PP), 64-way Expert Parallelism (EP) с 8 нодами, и ZeRO-1 Data Parallelism (DP). Для эффективного PP разработали алгоритм DualPipe, перекрывающий фазы коммуникации и вычисления в forward и backward фазах. Приводит к уменьшению pipeline bubbles. Благодаря суровым оптимизациям памяти обошлись без Tensor Parallelism (TP). Кроме этого разработали эффективные cross-node all-to-all communication kernels.
❇️ Но самая интересная для меня часть здесь — это FP8 Training.
Кто не знает, что такое FP32, FP16, BF16, вэлкам в мой старый пост: https://moocaholic.medium.com/fp64-fp32-fp16-bfloat16-tf32-and-other-members-of-the-zoo-a1ca7897d407. FP8 там нет, но по аналогии поймёте, что это такое.
Кажется, это первая открытая реально большая продакшн модель, обученная в FP8. Llama3, например, вроде как в BF16 обучалась, и я так понимаю это примерно стандарт, ну либо микс FP32/16. Да, была более ранняя работа (https://arxiv.org/abs/2409.12517) от израильтян из Habana (теперь Интел). Там в FP8 обучали 7B модель на 2T токенов на интеловско-хабановских же Gaudi2 и получали качество сравнимое с BF16 при улучшении throughput на 34%. Была и ещё более ранняя FP8-LM (https://arxiv.org/abs/2310.18313) от Microsoft, где обучали GPT-175B. Они даже библиотечку опубликовали (https://github.com/Azure/MS-AMP). В принципе не удивлюсь, если OpenAI в итоге тоже внутри на FP8 перешли, но от них молчок. Что там у Гугла тоже не поймёшь. Но ставлю на BF16 🙂
В реальности у DeepSeek, конечно, тоже mixed precision — какие-то вещи по-прежнему считаются в более полных форматах, BF16 или даже FP32. В таких форматах остались: embedding module, the output head, MoE gating modules, normalization operators, and attention operators (вот тут я не совсем понял, какие именно). Также в большей разрядности пишут master weights, weight gradients, и optimizer states. Это всё повышает стабильность обучения, кажется, основную проблему низкоразрядных форматов (ну за пределами отсутствия поддержки в кернелах и железе). Но большинство тяжёлых вычислений в FP8. Отчасти поэтому, я думаю, они сумели сильно сэкономить в деньгах на компьют. В идеальной теории это повышает доступный компьют в два раза, одновременно уменьшая во столько же требования к памяти.
Попутно реализовали сколько-то стратегий для повышения точности, например, более хитрое квантование, повышенную точность для аккумуляции, и приоритет мантиссы над экспонентой, благодаря чему для всех тензоров используется формат E4M3 (4 бита на экспоненту и 3 на мантиссу), а не смесь E4M3 и E5M2.
BY gonzo-обзоры ML статей
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Share with your friend now:
group-telegram.com/gonzo_ML/3294