Notice: file_put_contents(): Write of 6442 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 14634 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Алексей Хохлов | Telegram Webview: khokhlovAR/872 -
Telegram Group & Telegram Channel
Сегодня в Стокгольме проходит церемония вручения Нобелевских премий 2024 года. Как известно, половина Нобелевской премии по химии присуждена сотрудникам компании Google DeepMind Демису Хассабису и Джону Джамперу, которые разработали исключительно эффективную компьютерную программу AlphaFold2 для предсказания пространственной структуры белков по известной последовательности аминокислотных остатков с использованием инструментов искусственного интеллекта (см. посты от 9 и 14 октября).

На волне этого несомненного успеха сотрудники компания Google DeepMind недавно опубликовали весьма содержательное эссе о перспективах использования возможностей искусственного интеллекта (ИИ) в науке:

https://deepmind.google/public-policy/ai-for-science/

Я прочитал, мне понравилось. Основные проблемы и перспективы развития описаны со знанием дела. Рекомендую ознакомиться. ТГ-канал Innovation & Research разместил русский перевод этого важного документа, который можно скачать по ссылке:

https://www.group-telegram.com/abulaphia/5321

Приведу несколько фрагментов этого эссе (не то, чтобы самых важных, просто для затравки интереса):

Несмотря на значительное расширение научного сообщества за последние полвека (только в США число научных сотрудников выросло более чем в семь раз), темпы общественного прогресса снизились. Современные ученые сталкиваются с рядом проблем, которые все чаще связаны с масштабом и сложностью, начиная с постоянно растущей библиографической базы, которую необходимо проанализировать, и заканчивая все более сложными экспериментами. Современные методы глубинного обучения очень хорошо приспособлены для решения подобных задач.

Если говорить об обнародовании результатов научных исследований, то есть ряд полезных подходов, таких как серверы препринтов и репозитории кодов, однако большинство ученых по-прежнему публикуют свои результаты в виде трудных для понимания научных статей, насыщенных профессиональным жаргоном. Это может скорее охладить, нежели разжечь интерес к работе ученых, в том числе со стороны властей, представителей бизнеса и общественности.

Методы ИИ создают потенциал для того, чтобы кардинально переосмыслить определенные научные задачи, в том числе что значит «читать» или «писать» научную статью в мире, где ученый может использовать Большую Языковую Модель для ее рецензирования, корректировки выводов с учетом аудитории или преобразования в формат интерактивной статьи или аудиогида.

Обычно при поиске оптимальной структуры молекулы, доказательства или алгоритма ученые применяют сочетание интуиции, метода проб и ошибок, итераций или вычислений методом «грубой силы». Однако эти методы не могут охватить огромное пространство возможных решений, и оптимальные варианты остаются неисследованными. ИИ способен открыть доступ к новым областям пространства поиска и в то же время быстрее находить решения, которые с наибольшей вероятностью окажутся действенными.

Системы ИИ способствуют научному пониманию не вопреки своей непрозрачности, а благодаря ей, поскольку эта непрозрачность может быть следствием их способности работать в высокоразмерных пространствах, которые могут быть непостижимы для людей, но необходимы для революционных научных открытий.

Подходы к научным исследованиям в академических кругах и промышленности, как правило, прямо противоположны. В научном сообществе царит демократия, а в промышленных лабораториях — иерархия. Недавно появилась новая волна научно-исследовательских институтов. Такие организации пытаются найти баланс между ориентацией на иерархическую координацию и расширением возможностей для инициативы ученых. Для некоторых организаций это означает сосредоточиться на одной конкретной проблеме с предварительно заданными контрольными точками, а для других — предложить ведущим исследователям более свободное финансирование.



group-telegram.com/khokhlovAR/872
Create:
Last Update:

Сегодня в Стокгольме проходит церемония вручения Нобелевских премий 2024 года. Как известно, половина Нобелевской премии по химии присуждена сотрудникам компании Google DeepMind Демису Хассабису и Джону Джамперу, которые разработали исключительно эффективную компьютерную программу AlphaFold2 для предсказания пространственной структуры белков по известной последовательности аминокислотных остатков с использованием инструментов искусственного интеллекта (см. посты от 9 и 14 октября).

На волне этого несомненного успеха сотрудники компания Google DeepMind недавно опубликовали весьма содержательное эссе о перспективах использования возможностей искусственного интеллекта (ИИ) в науке:

https://deepmind.google/public-policy/ai-for-science/

Я прочитал, мне понравилось. Основные проблемы и перспективы развития описаны со знанием дела. Рекомендую ознакомиться. ТГ-канал Innovation & Research разместил русский перевод этого важного документа, который можно скачать по ссылке:

https://www.group-telegram.com/abulaphia/5321

Приведу несколько фрагментов этого эссе (не то, чтобы самых важных, просто для затравки интереса):

Несмотря на значительное расширение научного сообщества за последние полвека (только в США число научных сотрудников выросло более чем в семь раз), темпы общественного прогресса снизились. Современные ученые сталкиваются с рядом проблем, которые все чаще связаны с масштабом и сложностью, начиная с постоянно растущей библиографической базы, которую необходимо проанализировать, и заканчивая все более сложными экспериментами. Современные методы глубинного обучения очень хорошо приспособлены для решения подобных задач.

Если говорить об обнародовании результатов научных исследований, то есть ряд полезных подходов, таких как серверы препринтов и репозитории кодов, однако большинство ученых по-прежнему публикуют свои результаты в виде трудных для понимания научных статей, насыщенных профессиональным жаргоном. Это может скорее охладить, нежели разжечь интерес к работе ученых, в том числе со стороны властей, представителей бизнеса и общественности.

Методы ИИ создают потенциал для того, чтобы кардинально переосмыслить определенные научные задачи, в том числе что значит «читать» или «писать» научную статью в мире, где ученый может использовать Большую Языковую Модель для ее рецензирования, корректировки выводов с учетом аудитории или преобразования в формат интерактивной статьи или аудиогида.

Обычно при поиске оптимальной структуры молекулы, доказательства или алгоритма ученые применяют сочетание интуиции, метода проб и ошибок, итераций или вычислений методом «грубой силы». Однако эти методы не могут охватить огромное пространство возможных решений, и оптимальные варианты остаются неисследованными. ИИ способен открыть доступ к новым областям пространства поиска и в то же время быстрее находить решения, которые с наибольшей вероятностью окажутся действенными.

Системы ИИ способствуют научному пониманию не вопреки своей непрозрачности, а благодаря ей, поскольку эта непрозрачность может быть следствием их способности работать в высокоразмерных пространствах, которые могут быть непостижимы для людей, но необходимы для революционных научных открытий.

Подходы к научным исследованиям в академических кругах и промышленности, как правило, прямо противоположны. В научном сообществе царит демократия, а в промышленных лабораториях — иерархия. Недавно появилась новая волна научно-исследовательских институтов. Такие организации пытаются найти баланс между ориентацией на иерархическую координацию и расширением возможностей для инициативы ученых. Для некоторых организаций это означает сосредоточиться на одной конкретной проблеме с предварительно заданными контрольными точками, а для других — предложить ведущим исследователям более свободное финансирование.

BY Алексей Хохлов




Share with your friend now:
group-telegram.com/khokhlovAR/872

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. There was another possible development: Reuters also reported that Ukraine said that Belarus could soon join the invasion of Ukraine. However, the AFP, citing a Pentagon official, said the U.S. hasn’t yet seen evidence that Belarusian troops are in Ukraine. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford.
from kr


Telegram Алексей Хохлов
FROM American