Telegram Group & Telegram Channel
Constitutional Classifiers: Defending against Universal Jailbreaks across Thousands of Hours of Red Teaming
Mrinank Sharma et al., Anthropic. 2025
Статья, блог, демо

На прошлой неделе вышла достаточно громкая статья от Anthropic про защиту LLM-чат-ботов от джейлбрейков с помощью "конституционных классификаторов", т.е., выражаясь по-человечески, цензоров для вводов и выводов. Статья обещает падение успешности атак до менее полупроцента с пренебрежимо малым ростом FPR. Давайте посмотрим, в чем суть.

Для начала вспомним, откуда взялась конституция. Если помните, Anthropic активно применяет для элайнмента своих моделей подход под названием Constitutional AI сиречь RLAIF, суть которого в том, что вместо человека в RLHF фидбек модели по допустимости ее генераций дает сама модель. Определяет она допустимость с помощью рубрики что можно-что нельзя, которую Anthropic и называют конституцией. Соответственно суть подхода здесь в том, что цензоров учат на базе синтетических данных, сненерированных LLM на базе промпта с рубрикой.

Итак, исследователи ставят перед собой следующую задачу: защитить LLM от универсальных джейлбрейков – обратите внимание, не от любых, а от таких, которые стабильно добиваются от LLM недопустимого вывода в практически любом сценарии в рамках одной области знаний. Дополнительно они требуют от потенциального решения практической применимости с точки зрения задержек, вычислительной стоимости и доли ложноположительных срабатываний, а также возможности быстро адаптировать подход к новым угрозам и сферам.

Чтобы удовлетворить этим требованиям, решают использовать классификаторы, а классификаторам нужна обучающая выборка. Исследователи создают две рубрики – с безопасными темами и опасными темами, берут helpful-only модель (т.е. без элайнмента на безопасность) и просят ее сгенерировать промпты, соответствующие этим темам, а затем и ответы на эти промпты. Поверх этого применяется аугментация – парафраз, перевод, добавление джейлбрейков и сочетания подходов. На этих данных учатся классификаторы. Для ввода модель (Claude 3.5 Sonnet) файнтюнится на предсказание токена в продолжении фразы «Assistant: The dialog was harmful|not harmful». Для модерации вывода к этому добавляется логрег поверх логитов (?), которые обучаются вместе, при этом при обучении в качестве сигнала используется максимум по времени, который с определенным шедулингом подмешивается к NSP.

Обученный классификатор дают на растерзание любителям легкой наживы на HackerOne – за успешный джейлбрейк компания обещала 15 тысяч долларов. Чтобы получить деньги, нужно было создать такой промпт, который заставил бы Claude дать ответ на 10 разных вопросов о химическом оружии. Ответы оценивались как полные (аналогичные по детализации helpful-only модели), половинчатые (по оценке модели-ассессора дающей только часть сведений) или бесполезные. По оценкам исследователей, ред-тимеры потратили на обход модерации более 4 с половиной тысяч часов – без успеха. Ни один из джейлбрейков не оказался универсальным. Самый успешный из участников заставил модель дать полный ответ на 6 из 10 вопросов, причем разными джейлбрейками, самый удачный универсальный давал ответ на половину вопросов, девять – половинчатые ответы на более чем шесть вопросов. Это кажется очень крутым, но, меня лично смутила фраза в дизайне эксперимента: «При проектировании классификатора и выборе порогов мы отдавали приоритет устойчивости, поэтому FPR был достаточно высок: классификатор срабатывал на 44% трафика Claude[.]ai». Из забавного – часть ред-тимеров старались проэксплутарировать грейдер, заставляя модель давать очень длинные общие ответы, прямо как RL.



group-telegram.com/llmsecurity/487
Create:
Last Update:

Constitutional Classifiers: Defending against Universal Jailbreaks across Thousands of Hours of Red Teaming
Mrinank Sharma et al., Anthropic. 2025
Статья, блог, демо

На прошлой неделе вышла достаточно громкая статья от Anthropic про защиту LLM-чат-ботов от джейлбрейков с помощью "конституционных классификаторов", т.е., выражаясь по-человечески, цензоров для вводов и выводов. Статья обещает падение успешности атак до менее полупроцента с пренебрежимо малым ростом FPR. Давайте посмотрим, в чем суть.

Для начала вспомним, откуда взялась конституция. Если помните, Anthropic активно применяет для элайнмента своих моделей подход под названием Constitutional AI сиречь RLAIF, суть которого в том, что вместо человека в RLHF фидбек модели по допустимости ее генераций дает сама модель. Определяет она допустимость с помощью рубрики что можно-что нельзя, которую Anthropic и называют конституцией. Соответственно суть подхода здесь в том, что цензоров учат на базе синтетических данных, сненерированных LLM на базе промпта с рубрикой.

Итак, исследователи ставят перед собой следующую задачу: защитить LLM от универсальных джейлбрейков – обратите внимание, не от любых, а от таких, которые стабильно добиваются от LLM недопустимого вывода в практически любом сценарии в рамках одной области знаний. Дополнительно они требуют от потенциального решения практической применимости с точки зрения задержек, вычислительной стоимости и доли ложноположительных срабатываний, а также возможности быстро адаптировать подход к новым угрозам и сферам.

Чтобы удовлетворить этим требованиям, решают использовать классификаторы, а классификаторам нужна обучающая выборка. Исследователи создают две рубрики – с безопасными темами и опасными темами, берут helpful-only модель (т.е. без элайнмента на безопасность) и просят ее сгенерировать промпты, соответствующие этим темам, а затем и ответы на эти промпты. Поверх этого применяется аугментация – парафраз, перевод, добавление джейлбрейков и сочетания подходов. На этих данных учатся классификаторы. Для ввода модель (Claude 3.5 Sonnet) файнтюнится на предсказание токена в продолжении фразы «Assistant: The dialog was harmful|not harmful». Для модерации вывода к этому добавляется логрег поверх логитов (?), которые обучаются вместе, при этом при обучении в качестве сигнала используется максимум по времени, который с определенным шедулингом подмешивается к NSP.

Обученный классификатор дают на растерзание любителям легкой наживы на HackerOne – за успешный джейлбрейк компания обещала 15 тысяч долларов. Чтобы получить деньги, нужно было создать такой промпт, который заставил бы Claude дать ответ на 10 разных вопросов о химическом оружии. Ответы оценивались как полные (аналогичные по детализации helpful-only модели), половинчатые (по оценке модели-ассессора дающей только часть сведений) или бесполезные. По оценкам исследователей, ред-тимеры потратили на обход модерации более 4 с половиной тысяч часов – без успеха. Ни один из джейлбрейков не оказался универсальным. Самый успешный из участников заставил модель дать полный ответ на 6 из 10 вопросов, причем разными джейлбрейками, самый удачный универсальный давал ответ на половину вопросов, девять – половинчатые ответы на более чем шесть вопросов. Это кажется очень крутым, но, меня лично смутила фраза в дизайне эксперимента: «При проектировании классификатора и выборе порогов мы отдавали приоритет устойчивости, поэтому FPR был достаточно высок: классификатор срабатывал на 44% трафика Claude[.]ai». Из забавного – часть ред-тимеров старались проэксплутарировать грейдер, заставляя модель давать очень длинные общие ответы, прямо как RL.

BY llm security и каланы










Share with your friend now:
group-telegram.com/llmsecurity/487

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. To that end, when files are actively downloading, a new icon now appears in the Search bar that users can tap to view and manage downloads, pause and resume all downloads or just individual items, and select one to increase its priority or view it in a chat. Telegram users are able to send files of any type up to 2GB each and access them from any device, with no limit on cloud storage, which has made downloading files more popular on the platform. The original Telegram channel has expanded into a web of accounts for different locations, including specific pages made for individual Russian cities. There's also an English-language website, which states it is owned by the people who run the Telegram channels. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers.
from kr


Telegram llm security и каланы
FROM American