Диагональные орграфы, Кошулевы алгебры и триангуляции гомологических сфер
Магнитудные гомологии орграфа G -- это биградуированная абелева группа MH_{n,l}(G), где n,l -- целые числа. Такая странная теория гомологий орграфов, которая помнит слишком много информации, но непонятно какой. Магнитудные гомологии определяются и для обобщенных метрических пространств, но сейчас я хочу поговорить об орграфах. Графы я буду считать частным случаем орграфов, где каждое неориентированное ребро -- это пара ориентированных рёбер в обе стороны. Расстояние d(x,y) из вершины x в вершину y определяется как длина кратчайшего ориентированного пути, и если пути нет, то расстояние равно бесконечности.
При n=0 ненулевые магнитудные гомологии бывают только при l=0, и MH_{0,0} -- это свободная абелева группа, ранг которой равен количеству вершин.
При n=1 ненулевые магнитудные гомологии бывают только при l=1, и MH_{1,1} -- это свободная абелева группа, ранг которой равен количеству рёбер.
При n=2 магнитудные гомологии бывают нетривиальными уже для любого l=2,3,4,...
Однако для многих простых примеров орграфов по непонятной причине оказывается, что магнитудные гомологии сконцентрированы на диагонали. То есть они равны нулю при n не равном l. Такие орграфы назвали диагональными.
Например, неориентированные деревья диагональны, полные графы диагональны. Если взять джойн любых двух графов, то получается диагональный граф. Ещё бокс произведение диагональных графов диагонально. Это уже даёт большой запас диагональных графов. Граф икосаэдра ещё диагонален. Есть и другие интересные маленькие примеры. Но если пробуешь как-то описать все такие графы, то сталкиваешься с тем, что это какая-то жесть. Очень сложный какой-то класс графов. Не получается описать. И мы со Львом тут недавно связали этот класс орграфов с двумя известными темами: Кошулевыми алгебрами, и гомологическими сферами. Это отчасти объясняет сложность этого класса.
-------------------------- Связь с Кошулевыми алгебрами
По орграфу G можно построить такую градуированную алгебру σG над полем k, которую я называю алгеброй расстояний. Как векторное пространство она порождена парами вершин (x,y), таких, что d(x,y)<∞. Умножение определяется так, что (x,y)(y,z) равно (x,z), если d(x,y)+d(y,z) = d(x,z); 0, если d(x,y)+d(y,z) > d(x,z). Градуировка определяется так, что степень (x,y) равна d(x,y).
Не очень сложно доказать такую теорему:
ТЕОРЕМА: G диагонален тогда и только тогда, когда алгебра σG Кошулева для любого поля k.
Кошулевы алгебры — это довольно замороченный класс алгебр, внутри класса квадратичных алгебр. Квадратичные алгебры — это понятно, а вот Кошулевы — это жесть. Зато для диагональных графов мы понимаем, что их алгебра расстояний квадратична. Это позволяет описать очень удобное необходимое условие диагональности в комбинаторных терминах.
Диагональные орграфы, Кошулевы алгебры и триангуляции гомологических сфер
Магнитудные гомологии орграфа G -- это биградуированная абелева группа MH_{n,l}(G), где n,l -- целые числа. Такая странная теория гомологий орграфов, которая помнит слишком много информации, но непонятно какой. Магнитудные гомологии определяются и для обобщенных метрических пространств, но сейчас я хочу поговорить об орграфах. Графы я буду считать частным случаем орграфов, где каждое неориентированное ребро -- это пара ориентированных рёбер в обе стороны. Расстояние d(x,y) из вершины x в вершину y определяется как длина кратчайшего ориентированного пути, и если пути нет, то расстояние равно бесконечности.
При n=0 ненулевые магнитудные гомологии бывают только при l=0, и MH_{0,0} -- это свободная абелева группа, ранг которой равен количеству вершин.
При n=1 ненулевые магнитудные гомологии бывают только при l=1, и MH_{1,1} -- это свободная абелева группа, ранг которой равен количеству рёбер.
При n=2 магнитудные гомологии бывают нетривиальными уже для любого l=2,3,4,...
Однако для многих простых примеров орграфов по непонятной причине оказывается, что магнитудные гомологии сконцентрированы на диагонали. То есть они равны нулю при n не равном l. Такие орграфы назвали диагональными.
Например, неориентированные деревья диагональны, полные графы диагональны. Если взять джойн любых двух графов, то получается диагональный граф. Ещё бокс произведение диагональных графов диагонально. Это уже даёт большой запас диагональных графов. Граф икосаэдра ещё диагонален. Есть и другие интересные маленькие примеры. Но если пробуешь как-то описать все такие графы, то сталкиваешься с тем, что это какая-то жесть. Очень сложный какой-то класс графов. Не получается описать. И мы со Львом тут недавно связали этот класс орграфов с двумя известными темами: Кошулевыми алгебрами, и гомологическими сферами. Это отчасти объясняет сложность этого класса.
-------------------------- Связь с Кошулевыми алгебрами
По орграфу G можно построить такую градуированную алгебру σG над полем k, которую я называю алгеброй расстояний. Как векторное пространство она порождена парами вершин (x,y), таких, что d(x,y)<∞. Умножение определяется так, что (x,y)(y,z) равно (x,z), если d(x,y)+d(y,z) = d(x,z); 0, если d(x,y)+d(y,z) > d(x,z). Градуировка определяется так, что степень (x,y) равна d(x,y).
Не очень сложно доказать такую теорему:
ТЕОРЕМА: G диагонален тогда и только тогда, когда алгебра σG Кошулева для любого поля k.
Кошулевы алгебры — это довольно замороченный класс алгебр, внутри класса квадратичных алгебр. Квадратичные алгебры — это понятно, а вот Кошулевы — это жесть. Зато для диагональных графов мы понимаем, что их алгебра расстояний квадратична. Это позволяет описать очень удобное необходимое условие диагональности в комбинаторных терминах.
BY Математическая свалка Сепы
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. Telegram Messenger Blocks Navalny Bot During Russian Election The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. NEWS Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can."
from kr