Модель глубокой нейронной сети для точного определения растворимости водорода при подземном хранении предложили томские ученые
🧪 Производство водорода постоянно наращивается, вопрос его хранения является одним из актуальных для отрасли. Сейчас он обычно хранится в газообразной или жидкой фазе в наземных резервуарах, активно развивается направление подземного хранения. Как сообщает пресс-служба Томского политехнического университета (ТПУ), исследователи вуза разработали гибридные модели глубокого обучения для прогнозирования растворимости водорода при его подземном хранении. Полученные ими результаты могут способствовать разработке более эффективных стратегий хранения водорода.
🌐 При подземном хранении водорода используются соленые водоносные горизонты и истощенные газовые или нефтяные пласты. Ученые считают опасным потенциальное взаимодействие водорода с остаточными углеводородами в пласте, подземными минералами и микробами: пригодность таких хранилищ для водорода требует детального изучения, говорят исследователи ТПУ. Так, одним из ключевых параметров является растворимость водорода в рассоле, измерение которой – сложный и дорогостоящий процесс. Методы машинного обучения, включая сверхточные нейронные сети (CNN) и сети долгой краткосрочной памяти (LSTM), могут обеспечить точные и надежные прогнозы растворимости, анализируя различные входные параметры и превосходя традиционные методы.
*️⃣ Однако автономные модели глубокого обучения обладают недостатками, например, высокой вычислительной нагрузкой, медленной сходимостью, чувствительностью к выбросам данных. Улучшить прогнозирование показателей растворимости водорода может интеграция методов глубокого обучения с оптимизационными алгоритмами. Такие гибридные модели, объединяющие CNN и LSTM с алгоритмами оптимизации, и были разработаны учеными ТПУ. В перспективе оптимальные модели могут быть использованы для надежного прогнозирования растворимости H2 без непосредственного проведения лабораторных исследований и в целом привести к разработке более эффективных и экономически выгодных методов подземного хранения водорода, уверены исследователи.
Модель глубокой нейронной сети для точного определения растворимости водорода при подземном хранении предложили томские ученые
🧪 Производство водорода постоянно наращивается, вопрос его хранения является одним из актуальных для отрасли. Сейчас он обычно хранится в газообразной или жидкой фазе в наземных резервуарах, активно развивается направление подземного хранения. Как сообщает пресс-служба Томского политехнического университета (ТПУ), исследователи вуза разработали гибридные модели глубокого обучения для прогнозирования растворимости водорода при его подземном хранении. Полученные ими результаты могут способствовать разработке более эффективных стратегий хранения водорода.
🌐 При подземном хранении водорода используются соленые водоносные горизонты и истощенные газовые или нефтяные пласты. Ученые считают опасным потенциальное взаимодействие водорода с остаточными углеводородами в пласте, подземными минералами и микробами: пригодность таких хранилищ для водорода требует детального изучения, говорят исследователи ТПУ. Так, одним из ключевых параметров является растворимость водорода в рассоле, измерение которой – сложный и дорогостоящий процесс. Методы машинного обучения, включая сверхточные нейронные сети (CNN) и сети долгой краткосрочной памяти (LSTM), могут обеспечить точные и надежные прогнозы растворимости, анализируя различные входные параметры и превосходя традиционные методы.
*️⃣ Однако автономные модели глубокого обучения обладают недостатками, например, высокой вычислительной нагрузкой, медленной сходимостью, чувствительностью к выбросам данных. Улучшить прогнозирование показателей растворимости водорода может интеграция методов глубокого обучения с оптимизационными алгоритмами. Такие гибридные модели, объединяющие CNN и LSTM с алгоритмами оптимизации, и были разработаны учеными ТПУ. В перспективе оптимальные модели могут быть использованы для надежного прогнозирования растворимости H2 без непосредственного проведения лабораторных исследований и в целом привести к разработке более эффективных и экономически выгодных методов подземного хранения водорода, уверены исследователи.
Despite Telegram's origins, its approach to users' security has privacy advocates worried. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change.
from kr