Telegram Group & Telegram Channel
Необычные значения в данных
Цикл постов о подготовке данных. Пост 3

Продолжаем серию постов, посвященную подготовке данных. Первый пост тут, второй - тут.

Главное, что надо понять про выбросы - откуда они берутся. Какова природа, каков механизм генерации выбросов?

Фреймворк работы с выбросами

- Выявляем необычные точки
- Формулируем гипотезы: как был сгенерирован выброс
- Проверяем гипотезы
- Принимаем решение: интересны ли нам эти случаи
- Выкидываем или трансформируем необычные данные

Примеры

Выявляем необычные точки

Например, анализируя данные о прокате велосипедов, мы можем увидеть заметную часть (несколько процентов) очень коротких поездок. Поездка меньше 60 секунд - очевидно, аномалия.

Формулируем гипотезу: как был сгенерирован выброс

Гипотеза 1: ошибки/отказы. Велосипед был сломан, пользователь увидел это и вернул в прокат.

Гипотеза 2: дождь. Все, кто собирался ехать, отменяют поездки.

Проверяем гипотезы

Гипотеза 1. Скорее всего, таких случаев было много в первые несколько дней сезона, затем мало, и к концу сезона количество отказов постоянно росло. Короткие поездки случаются подряд с одними и теми же велосипедами. Эти предположения можно проверить на имеющихся данных.

Гипотеза 2. Если гипотеза верна, короткие поездки будут сгруппированы по времени и локации, но не привязаны к конкретному велосипеду.

Принимаем решение: интересны ли нам эти случаи

Интересна ли нам аналитика по отказам и нужно ли нам учитывать дождь в аналитике? Общаемся с бизнес-заказчиком и принимаем решение, исходя из целей продукта, над которым работаем.

Выкидываем или трансформируем необычные данные

Если данные не несут дополнительного велью для продукта - можно удалить, если несут, то смотрим пост 2.

Мораль

Для правильной работы с выбросами нужно сформулировать цель анализа и гипотезу о процессе генерации данных, для остального есть инструменты.

Ваш @Reliable ML



group-telegram.com/reliable_ml/145
Create:
Last Update:

Необычные значения в данных
Цикл постов о подготовке данных. Пост 3

Продолжаем серию постов, посвященную подготовке данных. Первый пост тут, второй - тут.

Главное, что надо понять про выбросы - откуда они берутся. Какова природа, каков механизм генерации выбросов?

Фреймворк работы с выбросами

- Выявляем необычные точки
- Формулируем гипотезы: как был сгенерирован выброс
- Проверяем гипотезы
- Принимаем решение: интересны ли нам эти случаи
- Выкидываем или трансформируем необычные данные

Примеры

Выявляем необычные точки

Например, анализируя данные о прокате велосипедов, мы можем увидеть заметную часть (несколько процентов) очень коротких поездок. Поездка меньше 60 секунд - очевидно, аномалия.

Формулируем гипотезу: как был сгенерирован выброс

Гипотеза 1: ошибки/отказы. Велосипед был сломан, пользователь увидел это и вернул в прокат.

Гипотеза 2: дождь. Все, кто собирался ехать, отменяют поездки.

Проверяем гипотезы

Гипотеза 1. Скорее всего, таких случаев было много в первые несколько дней сезона, затем мало, и к концу сезона количество отказов постоянно росло. Короткие поездки случаются подряд с одними и теми же велосипедами. Эти предположения можно проверить на имеющихся данных.

Гипотеза 2. Если гипотеза верна, короткие поездки будут сгруппированы по времени и локации, но не привязаны к конкретному велосипеду.

Принимаем решение: интересны ли нам эти случаи

Интересна ли нам аналитика по отказам и нужно ли нам учитывать дождь в аналитике? Общаемся с бизнес-заказчиком и принимаем решение, исходя из целей продукта, над которым работаем.

Выкидываем или трансформируем необычные данные

Если данные не несут дополнительного велью для продукта - можно удалить, если несут, то смотрим пост 2.

Мораль

Для правильной работы с выбросами нужно сформулировать цель анализа и гипотезу о процессе генерации данных, для остального есть инструменты.

Ваш @Reliable ML

BY Reliable ML


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/reliable_ml/145

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion. But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford. Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS.
from kr


Telegram Reliable ML
FROM American