Telegram Group & Telegram Channel
Но это была не самая интересная часть статьи — не зря же я писал про интерпретируемость?

Авторы задаются вопросами: почему в одном случае модель обобщается и работает, а в другом нет? Как именно модель грокнула задачу и начала решать задачу, какой механизм используется?

Оказывается, эти два вопроса связаны.— все дело в том, как модель решает задачу внутри себя.

В задаче композиции модель разбивается на 2 половинки. В первой она решает задачу «вытащить релевантную сущность», а во второй «вытащить нужное значения для найденной сущности». На примере:
— Возраст жены Барака ... (нужно написать цифру из атомарного факта)

Первые слои вытаскивают информацию о жене Барака (Мишель), и задача как бы становится «Возраст Мишель..» (это было дано в атомарных фактах). И вторая половина модели просто достаёт этот факт.

Проблема в том, что поскольку для части сущностей мы никогда не показывали такие задачки отношений, то модель не запомнила их и не разместила во второй половине. Ей просто неоткуда достать информацию, её не существует в момент обработки — она осталась в первых слоях, в первой половине модели. И это указывает на ограничение архитектуры трансформера — у каждого блока своя память (зашитая в параметры модели), и не получится вернуться на несколько блоков назад, чтобы найти какой-то факт. Если пропустил — всё. Авторы валидируют эту гипотезу изменением трансформера, предоставляя возможность обращаться к фактам из первых слоёв (по сути, банки знаний были общими для двух половинок) — и это заставляет модель работать даже для OOD задачи!

Вот так интерпретирование подсказывает, как нужно менять архитектуру, чтобы получить модель, вырабатывающую генерализуемую логику.

Но почему всё заработало сразу в задаче сравнения? А там работал другой механизм — в первой половине модели происходило извлечение фактов сразу для обеих сущностей (в моём примере это возраст Трампа и Байдена), а во второй половине происходило сравнение. Так как все факты модель успела запомнить, то такое «параллельное» извлечение знаний/выполнение задачи позволило работать с любыми сравнениями.

Самое крутое — что можно вот прямо заглянуть в трансформер и понять, решает модель задачу (научилась логике) или же просто запоминает, что ей говорят.



group-telegram.com/seeallochnaya/1476
Create:
Last Update:

Но это была не самая интересная часть статьи — не зря же я писал про интерпретируемость?

Авторы задаются вопросами: почему в одном случае модель обобщается и работает, а в другом нет? Как именно модель грокнула задачу и начала решать задачу, какой механизм используется?

Оказывается, эти два вопроса связаны.— все дело в том, как модель решает задачу внутри себя.

В задаче композиции модель разбивается на 2 половинки. В первой она решает задачу «вытащить релевантную сущность», а во второй «вытащить нужное значения для найденной сущности». На примере:
— Возраст жены Барака ... (нужно написать цифру из атомарного факта)

Первые слои вытаскивают информацию о жене Барака (Мишель), и задача как бы становится «Возраст Мишель..» (это было дано в атомарных фактах). И вторая половина модели просто достаёт этот факт.

Проблема в том, что поскольку для части сущностей мы никогда не показывали такие задачки отношений, то модель не запомнила их и не разместила во второй половине. Ей просто неоткуда достать информацию, её не существует в момент обработки — она осталась в первых слоях, в первой половине модели. И это указывает на ограничение архитектуры трансформера — у каждого блока своя память (зашитая в параметры модели), и не получится вернуться на несколько блоков назад, чтобы найти какой-то факт. Если пропустил — всё. Авторы валидируют эту гипотезу изменением трансформера, предоставляя возможность обращаться к фактам из первых слоёв (по сути, банки знаний были общими для двух половинок) — и это заставляет модель работать даже для OOD задачи!

Вот так интерпретирование подсказывает, как нужно менять архитектуру, чтобы получить модель, вырабатывающую генерализуемую логику.

Но почему всё заработало сразу в задаче сравнения? А там работал другой механизм — в первой половине модели происходило извлечение фактов сразу для обеих сущностей (в моём примере это возраст Трампа и Байдена), а во второй половине происходило сравнение. Так как все факты модель успела запомнить, то такое «параллельное» извлечение знаний/выполнение задачи позволило работать с любыми сравнениями.

Самое крутое — что можно вот прямо заглянуть в трансформер и понять, решает модель задачу (научилась логике) или же просто запоминает, что ей говорят.

BY Сиолошная


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/seeallochnaya/1476

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events." Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities. Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.”
from kr


Telegram Сиолошная
FROM American