Telegram Group & Telegram Channel
Я устал. Каждый 5й коммент не только в моём, но и в других чатах — «а что правда модель X лучше чем модель Y? А мне другой человек говорил наоборот (или я сам попробовал и вышло не так)».

Давайте выскажу свою позицию:
1) Модели могут быть лучше на одних задачах и хуже на других. Нет универсально умной модели, которая в каждой отдельной вещи лучше остальных.
2) Это остаётся верным даже если кажется, что домен или тип навыка один и тот же. К примеру, программирование — ну чё тут, вот Python и Web, и там и там код в файлах, да? Нет. Одна модель может быть лучше в конкретно вашем проекте конкретно с Python, а другая лучше в Web-программировании (даже не всём, а, скажем, только фронтэнде на React)
3) Даже в одном и том же домене одна и та же модель может вызывать кардинально разные ощущения у пользователей, один скажет «по мне так топ, сравнивал с Claude», другой: «не, чёт не зашло». Почему? Моё основное объяснение — конкретные юзкейсы, сценарии использования и типы запросов.
4) Все бенчмарки всегда стоит воспринимать максимально буквально: конкретно ТАКАЯ-ТО задача в ТАКОЙ-ТО постановке и вот с ТАКИМИ ограничениями, и ничего более. Именно поэтому я всегда пишу детальные длинные посты, объясняющие процесс сбора и фильтрации данных, процесс разметки и оценки. И вам всегда рекомендую в это вникать и разбираться.
4.1) вот даже конкретный пример про o1 — в системной карточке по замерам самих OpenAI оказывалось, что во многих задачах она хуже o1-preview. Вы правда думаете что они бы выпустили такую модель? Как объяснили в твиттере, почему-то замеры делались не на финальном файле с параметрами, и оттого результат не лучший. Но чисто по цифрам смотреть так да, прогресса нет

Так как же быть? Что делать? Брать и проверять самому в своих задачах. Все бенчмарки и списки могут лишь дать примерное представление о том, какие модели в самом верху, и с кого можно начать. Например, модели Gemini много где прям не всплывают вообще, так что если видите такое же на бенчмарке, максимально приближённом к своим задачам (такой очень полезно найти для ваших задач) — можно пропускать их и приоритизировать модели других провайдеров.

Пробовать, пробовать, ещё раз пробовать. В идеале конечно собрать свой бенчмарк вообще (даже в 30-40 запросов), как тут, но многие тут не технари, поэтому не буду это рекомендовать прям каждому. Проведите с моделькой пару часов, всё увидите (кто-то по 3 запросам определяет, но такое порицаю — слишком разреженный сигнал).

... ну или просто используйте ChatGPT как золотой стандарт, и всё. В среднем это рациональное решение по кругу бенчмарков ;)



group-telegram.com/seeallochnaya/2133
Create:
Last Update:

Я устал. Каждый 5й коммент не только в моём, но и в других чатах — «а что правда модель X лучше чем модель Y? А мне другой человек говорил наоборот (или я сам попробовал и вышло не так)».

Давайте выскажу свою позицию:
1) Модели могут быть лучше на одних задачах и хуже на других. Нет универсально умной модели, которая в каждой отдельной вещи лучше остальных.
2) Это остаётся верным даже если кажется, что домен или тип навыка один и тот же. К примеру, программирование — ну чё тут, вот Python и Web, и там и там код в файлах, да? Нет. Одна модель может быть лучше в конкретно вашем проекте конкретно с Python, а другая лучше в Web-программировании (даже не всём, а, скажем, только фронтэнде на React)
3) Даже в одном и том же домене одна и та же модель может вызывать кардинально разные ощущения у пользователей, один скажет «по мне так топ, сравнивал с Claude», другой: «не, чёт не зашло». Почему? Моё основное объяснение — конкретные юзкейсы, сценарии использования и типы запросов.
4) Все бенчмарки всегда стоит воспринимать максимально буквально: конкретно ТАКАЯ-ТО задача в ТАКОЙ-ТО постановке и вот с ТАКИМИ ограничениями, и ничего более. Именно поэтому я всегда пишу детальные длинные посты, объясняющие процесс сбора и фильтрации данных, процесс разметки и оценки. И вам всегда рекомендую в это вникать и разбираться.
4.1) вот даже конкретный пример про o1 — в системной карточке по замерам самих OpenAI оказывалось, что во многих задачах она хуже o1-preview. Вы правда думаете что они бы выпустили такую модель? Как объяснили в твиттере, почему-то замеры делались не на финальном файле с параметрами, и оттого результат не лучший. Но чисто по цифрам смотреть так да, прогресса нет

Так как же быть? Что делать? Брать и проверять самому в своих задачах. Все бенчмарки и списки могут лишь дать примерное представление о том, какие модели в самом верху, и с кого можно начать. Например, модели Gemini много где прям не всплывают вообще, так что если видите такое же на бенчмарке, максимально приближённом к своим задачам (такой очень полезно найти для ваших задач) — можно пропускать их и приоритизировать модели других провайдеров.

Пробовать, пробовать, ещё раз пробовать. В идеале конечно собрать свой бенчмарк вообще (даже в 30-40 запросов), как тут, но многие тут не технари, поэтому не буду это рекомендовать прям каждому. Проведите с моделькой пару часов, всё увидите (кто-то по 3 запросам определяет, но такое порицаю — слишком разреженный сигнал).

... ну или просто используйте ChatGPT как золотой стандарт, и всё. В среднем это рациональное решение по кругу бенчмарков ;)

BY Сиолошная


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/seeallochnaya/2133

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links. Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych.
from kr


Telegram Сиолошная
FROM American