Telegram Group & Telegram Channel
Вторая заметка, про цену использования o3:
— сам по себе бенчмарк подразумевает, что нужно достигнуть определённого уровня (75%) с учётом ограничения на вычислительные мощности, конвертированные в доллары ($10000 за 500 задач, 400 общедоступных + 100 секретных; $20 за задачу, в среднем человеку платили где-то $4-5)
— на ARC свежая модель OpenAI тестировалась двумя способами: чтобы уложиться в это ограничение, и чтобы пофлексить мускулами и показать наилучший возможный результат, потратив гораздо, нет, ГОРАЗДО больше денег.
— первый сетап, чтобы уложиться в $20 на задачу: модель параллельно и независимо генерирует 6 вариантов ответа, и затем из них выбирается один или два, который появлялся чаще всего (вообще ARC позволяет и людям делать 2 попытки, и обычно модели замеряют также, а тут не уточнили; по умолчанию считаю, что тоже 2, но это не важно).
— при этом цена использования o3 не сообщалась, и при расчётах используются цены на o1 (ведь она уже выпущена). Я делаю аккуратное предположение, что скорее всего модель будет стоить столько же, и что она, видимо, имеет примерно те же самые размеры (по крайней мере количество активных параметров). Увидим в январе-феврале '25-го, тут вообще спекуляция.
— для 100 приватных задач модель сгенерировала 33 миллиона токенов решений, то есть каждое решение (из 6 для задачи) в среднем имело длину 33M / 100 / 6 = 55'000 токенов, примерно 100 страниц текста. Жаль, что не показали результаты замера с генерацией одного решения.
— кажется, что 100 страниц это очень много и «модели очень глупые раз нужно столько писать» (тупейший аргумент кста), но на самом деле это может снова быть связано с форматом входных данных. Каждая клетка в сетке для задачи — это одна цифра плюс запятая. Сетка 20x20 квадратов — это уже 400+ токенов, страница текста в представлении LLM.
— и вот при таком подходе получилось 75%, планка взята, никаких суперультрабезумных затрат в миллионы долларов нет.
— Что плохо: мне не удалось найти, какие настройки o3 использовались. OpenAI показывали, что и для o1, и для o3 есть настройка длины и интенсивности цепочек рассуждений (low, medium и high), чтобы контролировать цену. Больше платишь = модель рассуждате дольше = ответы лучше. Аккуратно предположу, что 55'000 токенов — это средний режим рассуждений (он стоит у o1 пол умолчанию), не очень коротко, но и не очень долго.
— теперь к флекс-режиму. Он отличается тем, что вместо 6 решений генерируется 1024, и уже среди них выбирается одно или два самых популярных. Отсюда увеличение в ~170 раз (1024 / 6), в том числе и по цене: вместо $10'000 нужно потратить $1.7M. Это приносит свои плоды — качество вырастает с 75.7% до 87.5%. Обратите внимание, что это не «87.5% при возможности отправить 1024 ответа»: ответов отправляется 1 или 2, и они выбираются из этого множества генераций автоматически, без вмешательства человека и без доступа к истинному ответу. Вам не нужно в жизни генерировать и отсматривать столько решений.

Так что результаты, сравнимые со средними человеческим, можно получать в рамках относительно разумных затрат.

UPD к предыдущему посту: меня поправили и указали, что 300 задач для тренировки — это отдельные задачи, выделенные именно для тренировки, не связанные с 400, на которых мерили качество (но для них ответы всё равно доступны). Это никак не меняет канву повествования, кроме как подкрепляет тезис, что эти 400 и новые 100 сильно отличаются (так как качество просаживается, но всё равно остаётся высоким).



group-telegram.com/seeallochnaya/2164
Create:
Last Update:

Вторая заметка, про цену использования o3:
— сам по себе бенчмарк подразумевает, что нужно достигнуть определённого уровня (75%) с учётом ограничения на вычислительные мощности, конвертированные в доллары ($10000 за 500 задач, 400 общедоступных + 100 секретных; $20 за задачу, в среднем человеку платили где-то $4-5)
— на ARC свежая модель OpenAI тестировалась двумя способами: чтобы уложиться в это ограничение, и чтобы пофлексить мускулами и показать наилучший возможный результат, потратив гораздо, нет, ГОРАЗДО больше денег.
— первый сетап, чтобы уложиться в $20 на задачу: модель параллельно и независимо генерирует 6 вариантов ответа, и затем из них выбирается один или два, который появлялся чаще всего (вообще ARC позволяет и людям делать 2 попытки, и обычно модели замеряют также, а тут не уточнили; по умолчанию считаю, что тоже 2, но это не важно).
— при этом цена использования o3 не сообщалась, и при расчётах используются цены на o1 (ведь она уже выпущена). Я делаю аккуратное предположение, что скорее всего модель будет стоить столько же, и что она, видимо, имеет примерно те же самые размеры (по крайней мере количество активных параметров). Увидим в январе-феврале '25-го, тут вообще спекуляция.
— для 100 приватных задач модель сгенерировала 33 миллиона токенов решений, то есть каждое решение (из 6 для задачи) в среднем имело длину 33M / 100 / 6 = 55'000 токенов, примерно 100 страниц текста. Жаль, что не показали результаты замера с генерацией одного решения.
— кажется, что 100 страниц это очень много и «модели очень глупые раз нужно столько писать» (тупейший аргумент кста), но на самом деле это может снова быть связано с форматом входных данных. Каждая клетка в сетке для задачи — это одна цифра плюс запятая. Сетка 20x20 квадратов — это уже 400+ токенов, страница текста в представлении LLM.
— и вот при таком подходе получилось 75%, планка взята, никаких суперультрабезумных затрат в миллионы долларов нет.
— Что плохо: мне не удалось найти, какие настройки o3 использовались. OpenAI показывали, что и для o1, и для o3 есть настройка длины и интенсивности цепочек рассуждений (low, medium и high), чтобы контролировать цену. Больше платишь = модель рассуждате дольше = ответы лучше. Аккуратно предположу, что 55'000 токенов — это средний режим рассуждений (он стоит у o1 пол умолчанию), не очень коротко, но и не очень долго.
— теперь к флекс-режиму. Он отличается тем, что вместо 6 решений генерируется 1024, и уже среди них выбирается одно или два самых популярных. Отсюда увеличение в ~170 раз (1024 / 6), в том числе и по цене: вместо $10'000 нужно потратить $1.7M. Это приносит свои плоды — качество вырастает с 75.7% до 87.5%. Обратите внимание, что это не «87.5% при возможности отправить 1024 ответа»: ответов отправляется 1 или 2, и они выбираются из этого множества генераций автоматически, без вмешательства человека и без доступа к истинному ответу. Вам не нужно в жизни генерировать и отсматривать столько решений.

Так что результаты, сравнимые со средними человеческим, можно получать в рамках относительно разумных затрат.

UPD к предыдущему посту: меня поправили и указали, что 300 задач для тренировки — это отдельные задачи, выделенные именно для тренировки, не связанные с 400, на которых мерили качество (но для них ответы всё равно доступны). Это никак не меняет канву повествования, кроме как подкрепляет тезис, что эти 400 и новые 100 сильно отличаются (так как качество просаживается, но всё равно остаётся высоким).

BY Сиолошная


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/seeallochnaya/2164

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation." Despite Telegram's origins, its approach to users' security has privacy advocates worried. Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.” Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes.
from kr


Telegram Сиолошная
FROM American