Telegram Group & Telegram Channel
Вчера вышла интересная статья от ребят из Salesforce. Когда-то для меня было удивлением, что у них вообще есть отдел исследований искусственного интеллекта, ведь их основной бизнес - это SaaS CRM-система (по простому, система управления взаимоотношениями с клиентами по модели предоставления готового ПО). У них даже тикер на бирже CRM, хех 🤔

Так вот, они то и дело выпускают неплохие работы по Large Language Models и мультимодальным моделям, причём субъективно у меня складывается ощущение, что многое делается с задачей уменьшения требуемых ресурсов. То есть не полгода тренировать нейронку на кластере GPU, а нечто более приземленное.

Мультимодальные модели - это модели, работающие с несколькими типами данных, или модальностями. Картинки, текст, звук, видео - это разные модальности, и приемы-архитектуры нейронок должны быть адаптированы для них. Один из самых простых примеров мультимодальности - это ответ на вопрос по картинке: в каком городе находится достопримечательность (и картинка) ? что надето на человеке справа? И так далее.

Основная проблема в том, что нужно связывать два разных сигнала, от изображения и текста. Подходы давно существуют, работают неплохо, но зачастую требуют длительного обучения большиииииих моделек, чтобы "выровнять" их, или связать - то есть чтобы текстовая модель понимала сигнал от картиночной и наоборот.

Господа из Salesforce предложили переиспользовать существующие модели, замораживая их веса во время обучения (то есть не считая по ним градиенты и не изменяя), а между ними обучать маленькую сетку, которая формирует запросы (в прямом и переносном смысле) от одной модели к другой (на прикрепленном изображении это Q-former). Получается, что обучать нужно совсем мало - а метрики выходят лучше, чем у текущего State-of-the-Art подхода.
Подход просто гениален в своей простоте и изящности)

💨 Статья тут, веса и код здесь, коллаб имеется - можно зайти поиграться со своими картинками.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/seeallochnaya/41
Create:
Last Update:

Вчера вышла интересная статья от ребят из Salesforce. Когда-то для меня было удивлением, что у них вообще есть отдел исследований искусственного интеллекта, ведь их основной бизнес - это SaaS CRM-система (по простому, система управления взаимоотношениями с клиентами по модели предоставления готового ПО). У них даже тикер на бирже CRM, хех 🤔

Так вот, они то и дело выпускают неплохие работы по Large Language Models и мультимодальным моделям, причём субъективно у меня складывается ощущение, что многое делается с задачей уменьшения требуемых ресурсов. То есть не полгода тренировать нейронку на кластере GPU, а нечто более приземленное.

Мультимодальные модели - это модели, работающие с несколькими типами данных, или модальностями. Картинки, текст, звук, видео - это разные модальности, и приемы-архитектуры нейронок должны быть адаптированы для них. Один из самых простых примеров мультимодальности - это ответ на вопрос по картинке: в каком городе находится достопримечательность (и картинка) ? что надето на человеке справа? И так далее.

Основная проблема в том, что нужно связывать два разных сигнала, от изображения и текста. Подходы давно существуют, работают неплохо, но зачастую требуют длительного обучения большиииииих моделек, чтобы "выровнять" их, или связать - то есть чтобы текстовая модель понимала сигнал от картиночной и наоборот.

Господа из Salesforce предложили переиспользовать существующие модели, замораживая их веса во время обучения (то есть не считая по ним градиенты и не изменяя), а между ними обучать маленькую сетку, которая формирует запросы (в прямом и переносном смысле) от одной модели к другой (на прикрепленном изображении это Q-former). Получается, что обучать нужно совсем мало - а метрики выходят лучше, чем у текущего State-of-the-Art подхода.
Подход просто гениален в своей простоте и изящности)

💨 Статья тут, веса и код здесь, коллаб имеется - можно зайти поиграться со своими картинками.

BY Сиолошная




Share with your friend now:
group-telegram.com/seeallochnaya/41

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media. You may recall that, back when Facebook started changing WhatsApp’s terms of service, a number of news outlets reported on, and even recommended, switching to Telegram. Pavel Durov even said that users should delete WhatsApp “unless you are cool with all of your photos and messages becoming public one day.” But Telegram can’t be described as a more-secure version of WhatsApp. Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. He adds: "Telegram has become my primary news source." The fake Zelenskiy account reached 20,000 followers on Telegram before it was shut down, a remedial action that experts say is all too rare.
from kr


Telegram Сиолошная
FROM American