Telegram Group & Telegram Channel
Подборка материалов по освоению языка программирования R

Книги:
1. R in a Nutshell
неплохая книга для того чтобы начать знакомство с R, разбираются базовые концепции языка, необходимые для работы с ним (основные типы объектов, функции, ввод и вывод данных). Далее есть довольно значительный разбор применения R именно для анализа данных. Книгу рекомендую для в первую очередь пользователей R (а не разработчиков).
UPD: похоже, что книга немного устарела

2. R in action
скачать можно здесь

Кроме того, есть перевод книги на русский язык, у меня кстати есть бумажная версия, я ее почти дочитала, мне очень понравился подробный разбор статистических моделей и методов. С одной стороны он был недостаточно подробен, чтобы перейти на сухой язык формул, но достаточно доходчив, хотя и рассчитан, пожалуй, для не новичков в статистике. Примеры применения например перестановочных и бутстреп тестов в R тоже порадовали.
Бумажную версию можно купить здесь:
https://dmkpress.com/catalog/computer/statistics/978-5-94074-912-7/

3. R for Data Science
Соавтор этой книги Хадли Викхам (Hadley Wickham), разработчик среды/экосистемы tidyverse, разработчик IDE R Studio и вообще один из центральных игроков в развитии R как языка программирования. Книга эта, как следует из названия, подходит для т.н. датасаенса, то есть для всяческой работы с данными: анализ, визуализация, проверка статистических гипотез. У меня книга пока в списке для чтения.

4. Advanced R
Книга предназначена больше для программистов, для тех кто собирается погрузиться в разработку языка, здесь объясняется почему при выполнении определенных действий происходит так, а не иначе. Подробно разбирается ООП-парадигма программирования в языке R: основные классы, S3, S4, R6. Планирую разобраться с классами в R и с принципом метапрограммирования.

5. Введение в язык программирования R
https://textbook.rintro.ru/index.html
Одна из немногих книг на русском языке про R, на мой взгляд, подойдет для знакомства с языком и для дальнейшего продвижения, поскольку в ней затрагиваются довольно продвинутые вещи. Более детально смогу оценить, когда прочитаю сама)

6. Книга Ивана Позднякова "Анализ данных и статистика в R". Очень крутая, всем рекомендую! https://pozdniakov.github.io/tidy_stats/index.html

Курсы:
На степике
Очень люблю эту платформу, поэтому советовать буду на основании личного опыта прохождения курсов.
https://stepik.org/course/129 Анализ данных в R
https://stepik.org/course/724 Анализ данных в R. Часть 2.
Оба курса от Анатолия Карпова, замечательные курсы с бОльшим акцентом на анализ данных
https://stepik.org/course/497 Основы программирования на R
Не менее хороший курс, а может и более, поскольку здесь разбираются темы, более актуальные для разработки. Это неудивительно, потому что автор курса опирался в том числе на вышеупомянутую книгу Advanced R.

Кроме того, существуют курсы на курсере, но про их качество я точно сказать не смогу.

Пишите комментарии, какие курсы проходили и какие книги читали, а также советуйте свои источники, будем пополнять информацию!

#literature #R #recommendation



group-telegram.com/stats_for_science/25
Create:
Last Update:

Подборка материалов по освоению языка программирования R

Книги:
1. R in a Nutshell
неплохая книга для того чтобы начать знакомство с R, разбираются базовые концепции языка, необходимые для работы с ним (основные типы объектов, функции, ввод и вывод данных). Далее есть довольно значительный разбор применения R именно для анализа данных. Книгу рекомендую для в первую очередь пользователей R (а не разработчиков).
UPD: похоже, что книга немного устарела

2. R in action
скачать можно здесь

Кроме того, есть перевод книги на русский язык, у меня кстати есть бумажная версия, я ее почти дочитала, мне очень понравился подробный разбор статистических моделей и методов. С одной стороны он был недостаточно подробен, чтобы перейти на сухой язык формул, но достаточно доходчив, хотя и рассчитан, пожалуй, для не новичков в статистике. Примеры применения например перестановочных и бутстреп тестов в R тоже порадовали.
Бумажную версию можно купить здесь:
https://dmkpress.com/catalog/computer/statistics/978-5-94074-912-7/

3. R for Data Science
Соавтор этой книги Хадли Викхам (Hadley Wickham), разработчик среды/экосистемы tidyverse, разработчик IDE R Studio и вообще один из центральных игроков в развитии R как языка программирования. Книга эта, как следует из названия, подходит для т.н. датасаенса, то есть для всяческой работы с данными: анализ, визуализация, проверка статистических гипотез. У меня книга пока в списке для чтения.

4. Advanced R
Книга предназначена больше для программистов, для тех кто собирается погрузиться в разработку языка, здесь объясняется почему при выполнении определенных действий происходит так, а не иначе. Подробно разбирается ООП-парадигма программирования в языке R: основные классы, S3, S4, R6. Планирую разобраться с классами в R и с принципом метапрограммирования.

5. Введение в язык программирования R
https://textbook.rintro.ru/index.html
Одна из немногих книг на русском языке про R, на мой взгляд, подойдет для знакомства с языком и для дальнейшего продвижения, поскольку в ней затрагиваются довольно продвинутые вещи. Более детально смогу оценить, когда прочитаю сама)

6. Книга Ивана Позднякова "Анализ данных и статистика в R". Очень крутая, всем рекомендую! https://pozdniakov.github.io/tidy_stats/index.html

Курсы:
На степике
Очень люблю эту платформу, поэтому советовать буду на основании личного опыта прохождения курсов.
https://stepik.org/course/129 Анализ данных в R
https://stepik.org/course/724 Анализ данных в R. Часть 2.
Оба курса от Анатолия Карпова, замечательные курсы с бОльшим акцентом на анализ данных
https://stepik.org/course/497 Основы программирования на R
Не менее хороший курс, а может и более, поскольку здесь разбираются темы, более актуальные для разработки. Это неудивительно, потому что автор курса опирался в том числе на вышеупомянутую книгу Advanced R.

Кроме того, существуют курсы на курсере, но про их качество я точно сказать не смогу.

Пишите комментарии, какие курсы проходили и какие книги читали, а также советуйте свои источники, будем пополнять информацию!

#literature #R #recommendation

BY Статистика и R в науке и аналитике


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/stats_for_science/25

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements. Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe. If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client.
from kr


Telegram Статистика и R в науке и аналитике
FROM American