Эти классы пространств забавно взаимодействуют, помимо очевидных включений P- ⊆ P ⊆ P+.
Во-первых, из расслоений Хопфа выводится, что ΩS^3 ~ ΩS^2 x S^1, ΩS^7 ~ ΩS^4 x S^3, ΩS^15 ~ ΩS^8x S^7, поэтому P- можно определить как "пространства из P, в которых петель на S^2, S^4 и S^8 не меньше, чем копий S^1, S^3, S^7".
Ещё есть вот такая симметрия/сопряжённость: Утв. 1. Если X ∈ W, то ΩX ∈ P-. Утв. 2. Если Y ∈ P+, то ΣY ∈ W. Утв. 3. W замкнуто относительно ретрактов. (То есть: если X ∈ W и существуют отображения A -i-> X -r-> A, такие что ri: A->A гомотопно тождественному, то A ∈ W) Утв. 4. P замкнуто относительно ретрактов.
И вот ещё забавные факты: Утв. 5. Если ΩZ ∈ P+, то ΩZ ∈ P. Утв. 6. Если ΩΣX ∈ P+, то ΣX∈ W и поэтому ΩΣX ∈ P-.
Зачем это нужно? Иногда кучей рассуждений схожего характера удаётся доказать, что для некоторого Z верно ΩZ ∈ P. Это приятно, но копии S^1, S^3, S^7 мешаются под ногами. Но если заодно мы знаем, что ΩZ — это произведение пространств вида ΩΣX, то из Утв.4 и 6 следует, что "лишних копий нет" — их можно засунуть по Хопфу в петли на сферах, и в итоге ΩZ ∈ P-.
Эти классы пространств забавно взаимодействуют, помимо очевидных включений P- ⊆ P ⊆ P+.
Во-первых, из расслоений Хопфа выводится, что ΩS^3 ~ ΩS^2 x S^1, ΩS^7 ~ ΩS^4 x S^3, ΩS^15 ~ ΩS^8x S^7, поэтому P- можно определить как "пространства из P, в которых петель на S^2, S^4 и S^8 не меньше, чем копий S^1, S^3, S^7".
Ещё есть вот такая симметрия/сопряжённость: Утв. 1. Если X ∈ W, то ΩX ∈ P-. Утв. 2. Если Y ∈ P+, то ΣY ∈ W. Утв. 3. W замкнуто относительно ретрактов. (То есть: если X ∈ W и существуют отображения A -i-> X -r-> A, такие что ri: A->A гомотопно тождественному, то A ∈ W) Утв. 4. P замкнуто относительно ретрактов.
И вот ещё забавные факты: Утв. 5. Если ΩZ ∈ P+, то ΩZ ∈ P. Утв. 6. Если ΩΣX ∈ P+, то ΣX∈ W и поэтому ΩΣX ∈ P-.
Зачем это нужно? Иногда кучей рассуждений схожего характера удаётся доказать, что для некоторого Z верно ΩZ ∈ P. Это приятно, но копии S^1, S^3, S^7 мешаются под ногами. Но если заодно мы знаем, что ΩZ — это произведение пространств вида ΩΣX, то из Утв.4 и 6 следует, что "лишних копий нет" — их можно засунуть по Хопфу в петли на сферах, и в итоге ΩZ ∈ P-.
BY сладко стянул
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. "He has to start being more proactive and to find a real solution to this situation, not stay in standby without interfering. It's a very irresponsible position from the owner of Telegram," she said. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. "There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said.
from kr