group-telegram.com/math_dump_of_sepa/177
Last Update:
Несуществующие функторы
Несколько месяцев назад написал Эммануэль Фарджун (который еще нильпотентные пространства придумал). Говорит, что уверен, что не бывает никаких функторов из категории всех групп в категорию конечных групп, кроме постоянных. Но как доказать не знает. А доказать хочется, потому что его интересуют подобные вопросы для его любимых бесконечность категорий. Я скинул этот вопрос про категорию групп в чатик друзей, и Толик в тот же день доказал, красавчик вообще.
Эммануэль впечатлился, но сказал, что надо бы обобщить тогда уж. Нужно доказать, что не бывает непостоянных функторов из в каком-то смысле "больших" категорий во в каком-то смысле "маленькие" категории. Я помедитировал на доказательство Толика, десять раз его переделал, и доказал такую общую теорему.
Теорема. Пусть к — какой-то кардинал, C и D — категории, в которых определены произведения мощности к, и F — функтор из C в D. Предположим, что категория C сильно связна (то есть все её хом-множества не пусты), и что мощности хом-множеств между образами функтора F ограничены кардиналом к
|D(Fc,Fc')| ≤ к.
Тогда F постоянный функтор.
По технике — это детский сад, элементарная теория категорий, но Фарджун был доволен.
Из этой теоремы много забавных частных случаев следует. Например, из категории счётных групп нет непостоянных функторов в категорию конечно порожденных групп. Хотя чисто интуитивно довольно близкие категории. Или, например, если есть два кардинала к и л таких, что к ≥ 2^л, то нет непостоянных функторов из категории непустых множеств мощности ≤к в категорию непустых множеств мощности ≤л. Можно ещё много частных случаев напридумывать.
Мы ещё много чего понаписали, ещё другое направление там развили (изучали каких подфункторов в тождественном функторе на категории групп не бывает), скинули это дело в архив, но мы там ошибочку допустили. Мы сказали, что нет непостоянных функторов из категории всех множеств в категорию конечных множеств. Вот тут то нас и подловили. Понаписали на почту какие-то люди, что оказывается есть функтор такой. Что можно пустое множество в пустое послать, а все остальные множества в одноэлементное. И правда, я там опростоволосился с тем, что подумал, что категория множеств сильно связная, а оказалось, что хом из непустого множества в пустое множество пуст. Ну мы подправили. Нужно было категорию множеств либо на категорию непустых множеств заменить, либо на категорию множеств с отмеченной точкой. Эммануэль там еще какие-то свои гипотезы про бесконечность категории понаписал, как обычно. Выложили новую версию:
https://arxiv.org/abs/2306.04432
BY Математическая свалка Сепы
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Share with your friend now:
group-telegram.com/math_dump_of_sepa/177