Telegram Group Search
Коммутативные квадраты абелевых групп часто появляются в математике. Полезно знать их базовые свойства. Если вы знаете спектральную последовательность бикомплекса, и рассмотрите коммутативный квадрат как бикомплекс, то вы сможете доказать эти свойства c закрытыми глазами, без листочка бумаги.

Следующие утверждения эквивалентны:
1) центральный квадрат — пулбэк;
2) последовательность
0 → A → A'⊕B → B'
точна;
3) α' — изоморфизм и β' — мономорфизм.

Двойственные утверждения тоже эквивалентны
1) центральный квадрат — пушаут;
2) последовательность
A → A'⊕B → B' → 0
точна;
3) α' — эпиморфизм и β' — изоморфизм.

Получаем, что и следующие утверждения эквивалентны.
1) центральный квадрат — пулбэк и пушаут;
2) последовательность
0 → A → A'⊕B → B' → 0
точна;
3) α' и β' — изоморфизмы.

Конечно, здесь всё симметрично относительно замены (α, β) на (φ,ψ). Поэтому α' и β' изоморфизмы тогда и только тогда, когда
φ' : Ker(α) → Ker(β)
ψ' : Coker(α) → Coker(β)
изоморфизмы.

Это работает в любой абелевой категории.
2025/01/01 20:15:16
Back to Top
HTML Embed Code: