Qwen-7B: Alibaba зарелизилисвою опен-соурсную LLM на 7B параметров
Qwen-7B натренили на 2.2 трлн токенов, размер контекста во вреия тренировки был 2048, а на тесте можно впихнуть до 8192 (у Llama-2 - 4096). Это первая открытая LLM от Alibaba.
Что по бенчмаркам? В репе есть куча таблиц, и китайцы заявляют, что они бьют LLama-2. Особенно большая разница на бенчмарке по написанию кода Human-Eval: 24.4 vs 12.8. Но я бы осторожно смотрел на эти числа. Если по некоторым бенчмаркам Qwen-7B обходит ванильную LLama-2-7B, и даже LLaMA-2-13B, то вот с зафайнтюнеными версиями Llama-2 разрыв уже не такой большой. И, честно сказать, никто точно не знает, как они трениновали свою базовую модель.
По аналогии с LLaMa2-chat, у Qwen тоже есть чатовая версия Qwen-7B-Chat, которая затюнена отвечать на запросы пользователя и, кроме того, пользоваться разными тулами и API.
Для любителей деталей, архитектура похожа на LLaMA. Со следующими различиями:
> The following are the main differences from the standard transformer: 1) using untied embedding, 2) using rotary positional embedding, 3) no biases except for QKV in attention, 4) RMSNorm instead of LayerNorm, 5) SwiGLU instead of ReLU, and 6) adopting flash attention to accelerate training. The model has 32 layers, the embedding dimension is 4096, and the number of attention heads is 32.
Лицензия тоже как у Llama-2: Можно использовать в коммерчески целях, но только пока у вас нет 100 млн активных пользователей в месяц (у Llama-2 можно до 700 млн).
Больше деталей в этом репорте (да, это тупо .md файл в репозитории).
Qwen-7B: Alibaba зарелизилисвою опен-соурсную LLM на 7B параметров
Qwen-7B натренили на 2.2 трлн токенов, размер контекста во вреия тренировки был 2048, а на тесте можно впихнуть до 8192 (у Llama-2 - 4096). Это первая открытая LLM от Alibaba.
Что по бенчмаркам? В репе есть куча таблиц, и китайцы заявляют, что они бьют LLama-2. Особенно большая разница на бенчмарке по написанию кода Human-Eval: 24.4 vs 12.8. Но я бы осторожно смотрел на эти числа. Если по некоторым бенчмаркам Qwen-7B обходит ванильную LLama-2-7B, и даже LLaMA-2-13B, то вот с зафайнтюнеными версиями Llama-2 разрыв уже не такой большой. И, честно сказать, никто точно не знает, как они трениновали свою базовую модель.
По аналогии с LLaMa2-chat, у Qwen тоже есть чатовая версия Qwen-7B-Chat, которая затюнена отвечать на запросы пользователя и, кроме того, пользоваться разными тулами и API.
Для любителей деталей, архитектура похожа на LLaMA. Со следующими различиями:
> The following are the main differences from the standard transformer: 1) using untied embedding, 2) using rotary positional embedding, 3) no biases except for QKV in attention, 4) RMSNorm instead of LayerNorm, 5) SwiGLU instead of ReLU, and 6) adopting flash attention to accelerate training. The model has 32 layers, the embedding dimension is 4096, and the number of attention heads is 32.
Лицензия тоже как у Llama-2: Можно использовать в коммерчески целях, но только пока у вас нет 100 млн активных пользователей в месяц (у Llama-2 можно до 700 млн).
Больше деталей в этом репорте (да, это тупо .md файл в репозитории).
However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. The original Telegram channel has expanded into a web of accounts for different locations, including specific pages made for individual Russian cities. There's also an English-language website, which states it is owned by the people who run the Telegram channels. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals.
from ms