Telegram Group & Telegram Channel
А вот и наша статья подоспела - Cache Me if You Can: Accelerating Diffusion Models through Block Caching

Как я уже упоминал, наша команда в Meta GenAI занимается ускорением диффузии. В этой статье мы ускоряем генерацию изображений до x1.8 раза без потери качества с помощью умного кеширования во время инференса.

Как?
Для генерации одной картинки обычно требуется сделать много прогонов через модель Unet, например 50 DDIM шагов. Мы тут подметили, что активации Spatial-Attention блоков довольно гладко меняются от шага к шагу, и паттерн их изменения не зависит от промпта. Естественно, мы подумали, почему бы не кешировать фичи тех блоков, которые меняются наиболее медленно и пересчитывать их только раз в несколько шагов. Понт в том, что львиная доля всех вычислений происходит именно в attention блоках, поэтому пропуская их вычисления хотя бы на некоторых шагах, мы сильно ускоряем генерацию.

Все блоки разные, и их активации меняются с разной скоростью. Поэтому мы построили графики изменений активаций для каждого блока (усреднили по 64 запросам) и использовали их чтобы автоматически найти когда и какие блоки можно кешировать, и как долго должен жить кеш для каждого из блоков.

Чтобы убрать мелкие артифакты после кеширования, мы дополнительно обучаем time-dependent scale и shift параметры для каждого выходнрго канала кешируемых блоков. Это помогает сгладить разницу распределений между "честно посчитанными" фичами и закеширвоанными.

В итоге, получили x1.5-1.8 ускорение, причем FID скор даже улучшился после применения кеширования. А результаты Human Eval показали, что при фиксированном времени генерации модель с кешированием выдает более качественные картинки чем бейзлайн.

На каких архитектурах тестировали:
- LDM 512x512 (та же архитектура как у SD 1.5, но натренированная нами внутри GenAI)
- Наша Emu 768x768 с 2.7B параметров.

То есть метод гибок и может подстраиваться под модели разных размеров, причем расписание кеширования разных блоков строится автоматически. Взлетит и на SDXL тоже.

Статья на Arxiv

@ai_newz



group-telegram.com/ai_newz/2330
Create:
Last Update:

А вот и наша статья подоспела - Cache Me if You Can: Accelerating Diffusion Models through Block Caching

Как я уже упоминал, наша команда в Meta GenAI занимается ускорением диффузии. В этой статье мы ускоряем генерацию изображений до x1.8 раза без потери качества с помощью умного кеширования во время инференса.

Как?
Для генерации одной картинки обычно требуется сделать много прогонов через модель Unet, например 50 DDIM шагов. Мы тут подметили, что активации Spatial-Attention блоков довольно гладко меняются от шага к шагу, и паттерн их изменения не зависит от промпта. Естественно, мы подумали, почему бы не кешировать фичи тех блоков, которые меняются наиболее медленно и пересчитывать их только раз в несколько шагов. Понт в том, что львиная доля всех вычислений происходит именно в attention блоках, поэтому пропуская их вычисления хотя бы на некоторых шагах, мы сильно ускоряем генерацию.

Все блоки разные, и их активации меняются с разной скоростью. Поэтому мы построили графики изменений активаций для каждого блока (усреднили по 64 запросам) и использовали их чтобы автоматически найти когда и какие блоки можно кешировать, и как долго должен жить кеш для каждого из блоков.

Чтобы убрать мелкие артифакты после кеширования, мы дополнительно обучаем time-dependent scale и shift параметры для каждого выходнрго канала кешируемых блоков. Это помогает сгладить разницу распределений между "честно посчитанными" фичами и закеширвоанными.

В итоге, получили x1.5-1.8 ускорение, причем FID скор даже улучшился после применения кеширования. А результаты Human Eval показали, что при фиксированном времени генерации модель с кешированием выдает более качественные картинки чем бейзлайн.

На каких архитектурах тестировали:
- LDM 512x512 (та же архитектура как у SD 1.5, но натренированная нами внутри GenAI)
- Наша Emu 768x768 с 2.7B параметров.

То есть метод гибок и может подстраиваться под модели разных размеров, причем расписание кеширования разных блоков строится автоматически. Взлетит и на SDXL тоже.

Статья на Arxiv

@ai_newz

BY эйай ньюз







Share with your friend now:
group-telegram.com/ai_newz/2330

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. "He has to start being more proactive and to find a real solution to this situation, not stay in standby without interfering. It's a very irresponsible position from the owner of Telegram," she said. Again, in contrast to Facebook, Google and Twitter, Telegram's founder Pavel Durov runs his company in relative secrecy from Dubai.
from ms


Telegram эйай ньюз
FROM American