Notice: file_put_contents(): Write of 13292 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50
эйай ньюз | Telegram Webview: ai_newz/2662 -
Telegram Group & Telegram Channel
Deepseek V2: топ за свои деньги

Что-то в опенсорс в последнее время попадает прям поток MoE моделей, вот и DeepSeek V2 из них. 236B параметров, из которых 21B - активных. По качеству - между Mixtral 8x22B и LLaMa 3 70B, но при этом в 2-4 раза дешевле этих моделей у самых дешёвых провайдеров, всего лишь 14 центов за млн токенов инпута и 28 за млн токенов на выход. Лицензия модели MIT, так что до конца недели будет штук пять разных провайдеров дешевле этого.

Главная особенность - Multi-Head Latent Attention (MLA). От обычного Multi-Head Attention (MHA) он отличается механизмом сжатия KV Cache, где он хранится как низкоранговая матрица, откуда и куда проецируется когда его нужно использовать или обновить. Из экспериментов, по качеству это работает лучше MHA, при этом используя в 4 раза меньше памяти чем обычные Grouped Query Attention конфиги. Из нюансов - авторам пришлось изобрести новый вариант RoPE чтобы это всё заработало, так как обычный RoPE такого количества линейных проекций туда и назад переживать решительно отказывается. Если честно, я не совсем понимаю почему это работает и почему нету абляций для dense моделей, но интересно как это будет сочетаться с квантизацией KV кэша.

Размер контекста - 128k. Тренировали это всё на 8 триллионах токенов в течении 1.5 миллиона часов на H800 (китайская версия H100). Это уровень компьюта тренировки LLaMa 3 8B и примерно в 3 раза больше чем у Snowflake Arctic.

У модели 162 эксперта, из которых 2 перманентно активные, а из остальных 160-ти на каждый токен выбирается 6. Хочу отметить что эксперты там крайне маленькие – у каждого размерность всего 1536.

Соотношение цены и качества прекрасное, если все подтвердится на ChatBot Arena.

Из минусов — размер. В BF16 для локального инференса нужно 8x A100 с 80GB VRAM. Вся надежда на квантизацию.

Демка
Пейпер
Базовая модель
Чат версия

@ai_newz



group-telegram.com/ai_newz/2662
Create:
Last Update:

Deepseek V2: топ за свои деньги

Что-то в опенсорс в последнее время попадает прям поток MoE моделей, вот и DeepSeek V2 из них. 236B параметров, из которых 21B - активных. По качеству - между Mixtral 8x22B и LLaMa 3 70B, но при этом в 2-4 раза дешевле этих моделей у самых дешёвых провайдеров, всего лишь 14 центов за млн токенов инпута и 28 за млн токенов на выход. Лицензия модели MIT, так что до конца недели будет штук пять разных провайдеров дешевле этого.

Главная особенность - Multi-Head Latent Attention (MLA). От обычного Multi-Head Attention (MHA) он отличается механизмом сжатия KV Cache, где он хранится как низкоранговая матрица, откуда и куда проецируется когда его нужно использовать или обновить. Из экспериментов, по качеству это работает лучше MHA, при этом используя в 4 раза меньше памяти чем обычные Grouped Query Attention конфиги. Из нюансов - авторам пришлось изобрести новый вариант RoPE чтобы это всё заработало, так как обычный RoPE такого количества линейных проекций туда и назад переживать решительно отказывается. Если честно, я не совсем понимаю почему это работает и почему нету абляций для dense моделей, но интересно как это будет сочетаться с квантизацией KV кэша.

Размер контекста - 128k. Тренировали это всё на 8 триллионах токенов в течении 1.5 миллиона часов на H800 (китайская версия H100). Это уровень компьюта тренировки LLaMa 3 8B и примерно в 3 раза больше чем у Snowflake Arctic.

У модели 162 эксперта, из которых 2 перманентно активные, а из остальных 160-ти на каждый токен выбирается 6. Хочу отметить что эксперты там крайне маленькие – у каждого размерность всего 1536.

Соотношение цены и качества прекрасное, если все подтвердится на ChatBot Arena.

Из минусов — размер. В BF16 для локального инференса нужно 8x A100 с 80GB VRAM. Вся надежда на квантизацию.

Демка
Пейпер
Базовая модель
Чат версия

@ai_newz

BY эйай ньюз





Share with your friend now:
group-telegram.com/ai_newz/2662

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. The War on Fakes channel has repeatedly attempted to push conspiracies that footage from Ukraine is somehow being falsified. One post on the channel from February 24 claimed without evidence that a widely viewed photo of a Ukrainian woman injured in an airstrike in the city of Chuhuiv was doctored and that the woman was seen in a different photo days later without injuries. The post, which has over 600,000 views, also baselessly claimed that the woman's blood was actually makeup or grape juice. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users.
from ms


Telegram эйай ньюз
FROM American