Telegram Group & Telegram Channel
I. Регрессия для нормального респонса

Итак, пусть условное распределение Y при данном X нормально и наши наблюдения условно при данном X независимы -- первая строка на картинке. Тогда условное распределение оценок коэффициентов тоже нормальное, оценки несмещенные и состоятельные.

Что важно:
1. Мы не налагаем вообще никаких ограничений на распределение регрессоров. В том числе, мы не требуем, чтобы (Yi, Xi) были iid, мы ограничились только условной независимостью.
2. Зато условное распределение респонса должно быть нормальным и никак иначе. Наверное, мы можем сказать что это условно параметрическая модель. Условно -- потому что мы обусловливаем иксами. Параметрическая -- потому что мы предполагаем, что (условное) распределение игреков принадлежит параметрическому семейству и полностью описывается (условным) матожиданием и (условной же) остаточной дисперсией.
3. Тесты в такой модели точные (в противовес асимптотическим) -- т.е. работают и на малых выборках.
4. Статвывод проводится условно при данных регрессорах. Посчитать маргинальную дисперсию оценок не получится -- для этого нужно выинтегрировать иксы, а мы не знаем их распределения.
5. Благодаря тому, что мы обуславливаем иксами, они могут быть как случайными, так и заранее заданными / константными (designed industrial experiments, вам привет).

Четвертый пункт мозголомный, как его интерпретировать философски я пока не очень понимаю. Если вдруг кто-то в курсе -- пишите в комментариях.

Еще раз заметим, что мы здесь работаем условно (conditionally) при данных регрессорах. В этой модели OLS оценка -- это оценка методом условного максимального правдоподобия. Для метода максимального правдоподобия мы не задаем совместное распределение Y и X, мы определяем условное распределение игреков при данных иксах.

Сравните также, например, с тестом Фишера, непараметрическим бутстрепом, перестановочными тестами, регрессией Кокса или условной логистической регрессией. Техника обуславливания данными (всеми или частью) -- продуктивная штука.



group-telegram.com/choking_data/27
Create:
Last Update:

I. Регрессия для нормального респонса

Итак, пусть условное распределение Y при данном X нормально и наши наблюдения условно при данном X независимы -- первая строка на картинке. Тогда условное распределение оценок коэффициентов тоже нормальное, оценки несмещенные и состоятельные.

Что важно:
1. Мы не налагаем вообще никаких ограничений на распределение регрессоров. В том числе, мы не требуем, чтобы (Yi, Xi) были iid, мы ограничились только условной независимостью.
2. Зато условное распределение респонса должно быть нормальным и никак иначе. Наверное, мы можем сказать что это условно параметрическая модель. Условно -- потому что мы обусловливаем иксами. Параметрическая -- потому что мы предполагаем, что (условное) распределение игреков принадлежит параметрическому семейству и полностью описывается (условным) матожиданием и (условной же) остаточной дисперсией.
3. Тесты в такой модели точные (в противовес асимптотическим) -- т.е. работают и на малых выборках.
4. Статвывод проводится условно при данных регрессорах. Посчитать маргинальную дисперсию оценок не получится -- для этого нужно выинтегрировать иксы, а мы не знаем их распределения.
5. Благодаря тому, что мы обуславливаем иксами, они могут быть как случайными, так и заранее заданными / константными (designed industrial experiments, вам привет).

Четвертый пункт мозголомный, как его интерпретировать философски я пока не очень понимаю. Если вдруг кто-то в курсе -- пишите в комментариях.

Еще раз заметим, что мы здесь работаем условно (conditionally) при данных регрессорах. В этой модели OLS оценка -- это оценка методом условного максимального правдоподобия. Для метода максимального правдоподобия мы не задаем совместное распределение Y и X, мы определяем условное распределение игреков при данных иксах.

Сравните также, например, с тестом Фишера, непараметрическим бутстрепом, перестановочными тестами, регрессией Кокса или условной логистической регрессией. Техника обуславливания данными (всеми или частью) -- продуктивная штука.

BY душно про дату




Share with your friend now:
group-telegram.com/choking_data/27

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client.
from ms


Telegram душно про дату
FROM American