Telegram Group & Telegram Channel
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle, Michael Carbin
CSAIL MIT

Статья: https://arxiv.org/abs/1803.03635

#CNN, #FFNN, #optimization, #pruning, #ICLR 2019

Статья немного про природу вещей. Рассматривают dense feed-forward neural networks, полносвязные и/или CNN. Известно, что методы network pruning позволяют эффективно ужать уже обученную сеть -- выкинуть заметную часть параметров (связей) без потерь качества (в ряде случаев удаётся снизить объём на 90%). Известно, кроме того, что сразу научить такую уменьшенную сеть до того же качества не выходит.

Авторы выдвигают гипотезу "лотерейного билета": любая случайно инициализированная плотная сеть, обучаемая на заданный таргет, содержит некоторую подсеть, которая, будучи обученной на тот же таргет, даст качество не хуже за то же или меньшее число итераций обучения. В целом, это утверждение имеет как минимум тривиальное подтверждение, но авторы утверждают, что это эффективная подсеть обычно существенно меньше основной. Такие эффективные подсети называют "winning tickets".

Интуиция тут такая: Начиная обучать случайно инициализированную сеть, оптимизатор просто ищет уже готовый подходящий канал внутри случайной сети, а дальше уже именно этот путь оптимизируется, а остальная сеть не очень то и нужна. В плотной сети число возможных путей от входа к выходу растёт с числом нейронов существенно надлинейно. Поэтому, чем больше сеть взять в начале, тем больше шансов сразу получить подходящий подграф.

Проводят серию экспериментов для подтверждения этой гипотезы:
1) Возьмём большую случайно инициализированную сеть Х, сохраним её копию С.
2) Обучим Х, применим к ней pruning, получим редуцированную обученную сеть У (размером 10-20% от Х).
3) Вернёмся к сохранённой копии С, редуцируем её до тех же параметров, что остались в У, но веса оставим случайными (из С) -- это будет сеть Z.
4) Обучим Z и сравним сходимость с Х. Качество должно получиться не хуже, а сходимость -- не медленнее.
5) Затем вернёмся к Z и вновь переинициализируем её случайным образом, пусть это будет сеть R. Опять сравним с X и Z. Если гипотеза верна, всё должно ухудшиться.
6) Ещё можно сравниться со случайным подграфом Х того же размера что Z.

В целом, результаты экспериментов скорее подтверждают гипотезу, по крайней мере для простых топологий. Дальше в статье идёт разбор таких экспериментов для некоторого числа разных задач, топологий и методов оптимизации.

Общие выводы:
- текущая схема обучения сетей не очень эффективна, есть куда улучшаться, например, в сторону более эффективной начальной инициализации (но не очень понятно как),
- можно попробовать определять winning tickets на ранних стадиях обучения большой сети и делать ранний pruning к ним -- это может повысить эффективность обучения на практике.



group-telegram.com/gonzo_ML/21
Create:
Last Update:

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle, Michael Carbin
CSAIL MIT

Статья: https://arxiv.org/abs/1803.03635

#CNN, #FFNN, #optimization, #pruning, #ICLR 2019

Статья немного про природу вещей. Рассматривают dense feed-forward neural networks, полносвязные и/или CNN. Известно, что методы network pruning позволяют эффективно ужать уже обученную сеть -- выкинуть заметную часть параметров (связей) без потерь качества (в ряде случаев удаётся снизить объём на 90%). Известно, кроме того, что сразу научить такую уменьшенную сеть до того же качества не выходит.

Авторы выдвигают гипотезу "лотерейного билета": любая случайно инициализированная плотная сеть, обучаемая на заданный таргет, содержит некоторую подсеть, которая, будучи обученной на тот же таргет, даст качество не хуже за то же или меньшее число итераций обучения. В целом, это утверждение имеет как минимум тривиальное подтверждение, но авторы утверждают, что это эффективная подсеть обычно существенно меньше основной. Такие эффективные подсети называют "winning tickets".

Интуиция тут такая: Начиная обучать случайно инициализированную сеть, оптимизатор просто ищет уже готовый подходящий канал внутри случайной сети, а дальше уже именно этот путь оптимизируется, а остальная сеть не очень то и нужна. В плотной сети число возможных путей от входа к выходу растёт с числом нейронов существенно надлинейно. Поэтому, чем больше сеть взять в начале, тем больше шансов сразу получить подходящий подграф.

Проводят серию экспериментов для подтверждения этой гипотезы:
1) Возьмём большую случайно инициализированную сеть Х, сохраним её копию С.
2) Обучим Х, применим к ней pruning, получим редуцированную обученную сеть У (размером 10-20% от Х).
3) Вернёмся к сохранённой копии С, редуцируем её до тех же параметров, что остались в У, но веса оставим случайными (из С) -- это будет сеть Z.
4) Обучим Z и сравним сходимость с Х. Качество должно получиться не хуже, а сходимость -- не медленнее.
5) Затем вернёмся к Z и вновь переинициализируем её случайным образом, пусть это будет сеть R. Опять сравним с X и Z. Если гипотеза верна, всё должно ухудшиться.
6) Ещё можно сравниться со случайным подграфом Х того же размера что Z.

В целом, результаты экспериментов скорее подтверждают гипотезу, по крайней мере для простых топологий. Дальше в статье идёт разбор таких экспериментов для некоторого числа разных задач, топологий и методов оптимизации.

Общие выводы:
- текущая схема обучения сетей не очень эффективна, есть куда улучшаться, например, в сторону более эффективной начальной инициализации (но не очень понятно как),
- можно попробовать определять winning tickets на ранних стадиях обучения большой сети и делать ранний pruning к ним -- это может повысить эффективность обучения на практике.

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/21

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively. "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. "This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added. As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred."
from ms


Telegram gonzo-обзоры ML статей
FROM American