Telegram Group & Telegram Channel
Forwarded from SciArticle
Инструменты для анализа научных статей

Современные инструменты с ИИ значительно облегчают работу ученых, ускоряя процессы поиска, анализа и написания научных материалов. Однако, как показывает статистика, не так много людей знают про них и не используют в научно-исследовательской деятельности. Также всем известные модели плохо ищут статьи (а иногда просто их придумывают и прикрепляют выдуманную ссылку) и, как правило, не учитывают контекст исследования.

Мы собрали подборку инструментов, которые стремятся к тому, чтобы упростить поиск и анализ научной информации:

1. ChatGPT
Всем известная и наверное самая популярная языковая модель, способная генерировать тексты, отвечать на вопросы и помогать в анализе данных. Полезна для быстрого получения информации и генерации идей. Однако, модель довольно плохо справляется с поиском достоверных источников и зачастую их придумывает сама. У OpenAI нет подключенного API к базам данных статей, что значительно усложняет работу. Сервис может помочь в анализе загруженных PDF, однако это не бесплатно.

2. Consensus
Consensus ориентирован на синтезирование результатов из множества научных публикаций, предлагая краткие и четкие выводы по заданным вопросам. Это инструмент помогает ускорить процесс обзора литературы, особенно в тех случаях, когда необходимо быстро понять основные выводы по исследуемой теме. Тем не менее, его ограничения заключаются в том, что он не всегда может предоставить полный контекст работы, а также ограничен базой данных, что влияет на полноту анализа.

3. Research Rabbit
Research Rabbit — это мощный инструмент для организации научных материалов. Он позволяет строить коллекции исследований, отслеживать новые публикации и визуализировать связи между статьями. Его основная сила — в организации материала и визуализации связей, но он не предоставляет инструментов для глубокого анализа контента статей или их синтеза.

4. Scite.ai
Scite.ai — это платформа, которая специализируется на анализе цитирования. С помощью ИИ она классифицирует цитаты на поддерживающие, опровергающие и нейтральные, что помогает исследователям понять, как одна работа была использована в контексте других исследований. Этот инструмент полезен для анализа научных цитирований, но он не предоставляет функционала для создания обзоров или резюме статей.

5. Typeset.io
Typeset.io — уникальная платформа для подготовки научных статей к публикации. Она предлагает шаблоны, инструменты для автоматического форматирования и помогает исследователям готовить статьи в соответствии с требованиями журналов.

6. SciArticle
Сейчас мы работаем над тем, чтобы разработать подобный продукт - @SciArticleBot, который объединит поиск, анализ и обработку научных статей с помощью ИИ. В отличие от зарубежных аналогов, модель будет поддерживать обработку русских статей и перевод английских на русский.

Обновление функционала позволит не только искать статьи по DOI, URL или текстовому запросу, но и генерировать резюме с помощью ИИ, а также составлять небольшие литературные обзоры, учитывая контекст исследования и PDF выбранных статей, что сделает его удобным помощником для ученых и не таким дорогим, как зарубежные сервисы.

Канал | Бот | Чат | Сайт



group-telegram.com/iogenras/574
Create:
Last Update:

Инструменты для анализа научных статей

Современные инструменты с ИИ значительно облегчают работу ученых, ускоряя процессы поиска, анализа и написания научных материалов. Однако, как показывает статистика, не так много людей знают про них и не используют в научно-исследовательской деятельности. Также всем известные модели плохо ищут статьи (а иногда просто их придумывают и прикрепляют выдуманную ссылку) и, как правило, не учитывают контекст исследования.

Мы собрали подборку инструментов, которые стремятся к тому, чтобы упростить поиск и анализ научной информации:

1. ChatGPT
Всем известная и наверное самая популярная языковая модель, способная генерировать тексты, отвечать на вопросы и помогать в анализе данных. Полезна для быстрого получения информации и генерации идей. Однако, модель довольно плохо справляется с поиском достоверных источников и зачастую их придумывает сама. У OpenAI нет подключенного API к базам данных статей, что значительно усложняет работу. Сервис может помочь в анализе загруженных PDF, однако это не бесплатно.

2. Consensus
Consensus ориентирован на синтезирование результатов из множества научных публикаций, предлагая краткие и четкие выводы по заданным вопросам. Это инструмент помогает ускорить процесс обзора литературы, особенно в тех случаях, когда необходимо быстро понять основные выводы по исследуемой теме. Тем не менее, его ограничения заключаются в том, что он не всегда может предоставить полный контекст работы, а также ограничен базой данных, что влияет на полноту анализа.

3. Research Rabbit
Research Rabbit — это мощный инструмент для организации научных материалов. Он позволяет строить коллекции исследований, отслеживать новые публикации и визуализировать связи между статьями. Его основная сила — в организации материала и визуализации связей, но он не предоставляет инструментов для глубокого анализа контента статей или их синтеза.

4. Scite.ai
Scite.ai — это платформа, которая специализируется на анализе цитирования. С помощью ИИ она классифицирует цитаты на поддерживающие, опровергающие и нейтральные, что помогает исследователям понять, как одна работа была использована в контексте других исследований. Этот инструмент полезен для анализа научных цитирований, но он не предоставляет функционала для создания обзоров или резюме статей.

5. Typeset.io
Typeset.io — уникальная платформа для подготовки научных статей к публикации. Она предлагает шаблоны, инструменты для автоматического форматирования и помогает исследователям готовить статьи в соответствии с требованиями журналов.

6. SciArticle
Сейчас мы работаем над тем, чтобы разработать подобный продукт - @SciArticleBot, который объединит поиск, анализ и обработку научных статей с помощью ИИ. В отличие от зарубежных аналогов, модель будет поддерживать обработку русских статей и перевод английских на русский.

Обновление функционала позволит не только искать статьи по DOI, URL или текстовому запросу, но и генерировать резюме с помощью ИИ, а также составлять небольшие литературные обзоры, учитывая контекст исследования и PDF выбранных статей, что сделает его удобным помощником для ученых и не таким дорогим, как зарубежные сервисы.

Канал | Бот | Чат | Сайт

BY ИОГен РАН




Share with your friend now:
group-telegram.com/iogenras/574

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. There was another possible development: Reuters also reported that Ukraine said that Belarus could soon join the invasion of Ukraine. However, the AFP, citing a Pentagon official, said the U.S. hasn’t yet seen evidence that Belarusian troops are in Ukraine. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content.
from ms


Telegram ИОГен РАН
FROM American