Notice: file_put_contents(): Write of 10538 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 4096 of 14634 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Алексей Хохлов | Telegram Webview: khokhlovAR/872 -
Telegram Group & Telegram Channel
Сегодня в Стокгольме проходит церемония вручения Нобелевских премий 2024 года. Как известно, половина Нобелевской премии по химии присуждена сотрудникам компании Google DeepMind Демису Хассабису и Джону Джамперу, которые разработали исключительно эффективную компьютерную программу AlphaFold2 для предсказания пространственной структуры белков по известной последовательности аминокислотных остатков с использованием инструментов искусственного интеллекта (см. посты от 9 и 14 октября).

На волне этого несомненного успеха сотрудники компания Google DeepMind недавно опубликовали весьма содержательное эссе о перспективах использования возможностей искусственного интеллекта (ИИ) в науке:

https://deepmind.google/public-policy/ai-for-science/

Я прочитал, мне понравилось. Основные проблемы и перспективы развития описаны со знанием дела. Рекомендую ознакомиться. ТГ-канал Innovation & Research разместил русский перевод этого важного документа, который можно скачать по ссылке:

https://www.group-telegram.com/abulaphia/5321

Приведу несколько фрагментов этого эссе (не то, чтобы самых важных, просто для затравки интереса):

Несмотря на значительное расширение научного сообщества за последние полвека (только в США число научных сотрудников выросло более чем в семь раз), темпы общественного прогресса снизились. Современные ученые сталкиваются с рядом проблем, которые все чаще связаны с масштабом и сложностью, начиная с постоянно растущей библиографической базы, которую необходимо проанализировать, и заканчивая все более сложными экспериментами. Современные методы глубинного обучения очень хорошо приспособлены для решения подобных задач.

Если говорить об обнародовании результатов научных исследований, то есть ряд полезных подходов, таких как серверы препринтов и репозитории кодов, однако большинство ученых по-прежнему публикуют свои результаты в виде трудных для понимания научных статей, насыщенных профессиональным жаргоном. Это может скорее охладить, нежели разжечь интерес к работе ученых, в том числе со стороны властей, представителей бизнеса и общественности.

Методы ИИ создают потенциал для того, чтобы кардинально переосмыслить определенные научные задачи, в том числе что значит «читать» или «писать» научную статью в мире, где ученый может использовать Большую Языковую Модель для ее рецензирования, корректировки выводов с учетом аудитории или преобразования в формат интерактивной статьи или аудиогида.

Обычно при поиске оптимальной структуры молекулы, доказательства или алгоритма ученые применяют сочетание интуиции, метода проб и ошибок, итераций или вычислений методом «грубой силы». Однако эти методы не могут охватить огромное пространство возможных решений, и оптимальные варианты остаются неисследованными. ИИ способен открыть доступ к новым областям пространства поиска и в то же время быстрее находить решения, которые с наибольшей вероятностью окажутся действенными.

Системы ИИ способствуют научному пониманию не вопреки своей непрозрачности, а благодаря ей, поскольку эта непрозрачность может быть следствием их способности работать в высокоразмерных пространствах, которые могут быть непостижимы для людей, но необходимы для революционных научных открытий.

Подходы к научным исследованиям в академических кругах и промышленности, как правило, прямо противоположны. В научном сообществе царит демократия, а в промышленных лабораториях — иерархия. Недавно появилась новая волна научно-исследовательских институтов. Такие организации пытаются найти баланс между ориентацией на иерархическую координацию и расширением возможностей для инициативы ученых. Для некоторых организаций это означает сосредоточиться на одной конкретной проблеме с предварительно заданными контрольными точками, а для других — предложить ведущим исследователям более свободное финансирование.



group-telegram.com/khokhlovAR/872
Create:
Last Update:

Сегодня в Стокгольме проходит церемония вручения Нобелевских премий 2024 года. Как известно, половина Нобелевской премии по химии присуждена сотрудникам компании Google DeepMind Демису Хассабису и Джону Джамперу, которые разработали исключительно эффективную компьютерную программу AlphaFold2 для предсказания пространственной структуры белков по известной последовательности аминокислотных остатков с использованием инструментов искусственного интеллекта (см. посты от 9 и 14 октября).

На волне этого несомненного успеха сотрудники компания Google DeepMind недавно опубликовали весьма содержательное эссе о перспективах использования возможностей искусственного интеллекта (ИИ) в науке:

https://deepmind.google/public-policy/ai-for-science/

Я прочитал, мне понравилось. Основные проблемы и перспективы развития описаны со знанием дела. Рекомендую ознакомиться. ТГ-канал Innovation & Research разместил русский перевод этого важного документа, который можно скачать по ссылке:

https://www.group-telegram.com/abulaphia/5321

Приведу несколько фрагментов этого эссе (не то, чтобы самых важных, просто для затравки интереса):

Несмотря на значительное расширение научного сообщества за последние полвека (только в США число научных сотрудников выросло более чем в семь раз), темпы общественного прогресса снизились. Современные ученые сталкиваются с рядом проблем, которые все чаще связаны с масштабом и сложностью, начиная с постоянно растущей библиографической базы, которую необходимо проанализировать, и заканчивая все более сложными экспериментами. Современные методы глубинного обучения очень хорошо приспособлены для решения подобных задач.

Если говорить об обнародовании результатов научных исследований, то есть ряд полезных подходов, таких как серверы препринтов и репозитории кодов, однако большинство ученых по-прежнему публикуют свои результаты в виде трудных для понимания научных статей, насыщенных профессиональным жаргоном. Это может скорее охладить, нежели разжечь интерес к работе ученых, в том числе со стороны властей, представителей бизнеса и общественности.

Методы ИИ создают потенциал для того, чтобы кардинально переосмыслить определенные научные задачи, в том числе что значит «читать» или «писать» научную статью в мире, где ученый может использовать Большую Языковую Модель для ее рецензирования, корректировки выводов с учетом аудитории или преобразования в формат интерактивной статьи или аудиогида.

Обычно при поиске оптимальной структуры молекулы, доказательства или алгоритма ученые применяют сочетание интуиции, метода проб и ошибок, итераций или вычислений методом «грубой силы». Однако эти методы не могут охватить огромное пространство возможных решений, и оптимальные варианты остаются неисследованными. ИИ способен открыть доступ к новым областям пространства поиска и в то же время быстрее находить решения, которые с наибольшей вероятностью окажутся действенными.

Системы ИИ способствуют научному пониманию не вопреки своей непрозрачности, а благодаря ей, поскольку эта непрозрачность может быть следствием их способности работать в высокоразмерных пространствах, которые могут быть непостижимы для людей, но необходимы для революционных научных открытий.

Подходы к научным исследованиям в академических кругах и промышленности, как правило, прямо противоположны. В научном сообществе царит демократия, а в промышленных лабораториях — иерархия. Недавно появилась новая волна научно-исследовательских институтов. Такие организации пытаются найти баланс между ориентацией на иерархическую координацию и расширением возможностей для инициативы ученых. Для некоторых организаций это означает сосредоточиться на одной конкретной проблеме с предварительно заданными контрольными точками, а для других — предложить ведущим исследователям более свободное финансирование.

BY Алексей Хохлов




Share with your friend now:
group-telegram.com/khokhlovAR/872

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. Emerson Brooking, a disinformation expert at the Atlantic Council's Digital Forensic Research Lab, said: "Back in the Wild West period of content moderation, like 2014 or 2015, maybe they could have gotten away with it, but it stands in marked contrast with how other companies run themselves today." READ MORE Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever."
from ms


Telegram Алексей Хохлов
FROM American